Andrew C. Lancaster, Mitchell E. Cardin, Jan A. Nguyen, Tej I. Mehta, Dilek Oncel, Harrison X. Bai, Keira A. Cohen, Cheng Ting Lin
{"title":"Utilizing Deep Learning and Computed Tomography to Determine Pulmonary Nodule Activity in Patients With Nontuberculous Mycobacterial-Lung Disease","authors":"Andrew C. Lancaster, Mitchell E. Cardin, Jan A. Nguyen, Tej I. Mehta, Dilek Oncel, Harrison X. Bai, Keira A. Cohen, Cheng Ting Lin","doi":"10.1097/rti.0000000000000745","DOIUrl":null,"url":null,"abstract":"To develop and evaluate a deep convolutional neural network (DCNN) model for the classification of acute and chronic lung nodules from nontuberculous mycobacterial-lung disease (NTM-LD) on computed tomography (CT).\n \n \n \n We collected a data set of 650 nodules (316 acute and 334 chronic) from the CT scans of 110 patients with NTM-LD. The data set was divided into training, validation, and test sets in a ratio of 4:1:1. Bounding boxes were used to crop the 2D CT images down to the area of interest. A DCNN model was built using 11 convolutional layers and trained on these images. The performance of the model was evaluated on the hold-out test set and compared with that of 3 radiologists who independently reviewed the images.\n \n \n \n The DCNN model achieved an area under the receiver operating characteristic curve of 0.806 for differentiating acute and chronic NTM-LD nodules, corresponding to sensitivity, specificity, and accuracy of 76%, 68%, and 72%, respectively. The performance of the model was comparable to that of the 3 radiologists, who had area under the receiver operating characteristic curve, sensitivity, specificity, and accuracy of 0.693 to 0.771, 61% to 82%, 59% to 73%, and 60% to 73%, respectively.\n \n \n \n This study demonstrated the feasibility of using a DCNN model for the classification of the activity of NTM-LD nodules on chest CT. The model performance was comparable to that of radiologists. This approach can potentially and efficiently improve the diagnosis and management of NTM-LD.","PeriodicalId":49974,"journal":{"name":"Journal of Thoracic Imaging","volume":"16 7","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thoracic Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/rti.0000000000000745","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
To develop and evaluate a deep convolutional neural network (DCNN) model for the classification of acute and chronic lung nodules from nontuberculous mycobacterial-lung disease (NTM-LD) on computed tomography (CT).
We collected a data set of 650 nodules (316 acute and 334 chronic) from the CT scans of 110 patients with NTM-LD. The data set was divided into training, validation, and test sets in a ratio of 4:1:1. Bounding boxes were used to crop the 2D CT images down to the area of interest. A DCNN model was built using 11 convolutional layers and trained on these images. The performance of the model was evaluated on the hold-out test set and compared with that of 3 radiologists who independently reviewed the images.
The DCNN model achieved an area under the receiver operating characteristic curve of 0.806 for differentiating acute and chronic NTM-LD nodules, corresponding to sensitivity, specificity, and accuracy of 76%, 68%, and 72%, respectively. The performance of the model was comparable to that of the 3 radiologists, who had area under the receiver operating characteristic curve, sensitivity, specificity, and accuracy of 0.693 to 0.771, 61% to 82%, 59% to 73%, and 60% to 73%, respectively.
This study demonstrated the feasibility of using a DCNN model for the classification of the activity of NTM-LD nodules on chest CT. The model performance was comparable to that of radiologists. This approach can potentially and efficiently improve the diagnosis and management of NTM-LD.
期刊介绍:
Journal of Thoracic Imaging (JTI) provides authoritative information on all aspects of the use of imaging techniques in the diagnosis of cardiac and pulmonary diseases. Original articles and analytical reviews published in this timely journal provide the very latest thinking of leading experts concerning the use of chest radiography, computed tomography, magnetic resonance imaging, positron emission tomography, ultrasound, and all other promising imaging techniques in cardiopulmonary radiology.
Official Journal of the Society of Thoracic Radiology:
Japanese Society of Thoracic Radiology
Korean Society of Thoracic Radiology
European Society of Thoracic Imaging.