Tony Valayil Varghese*, Josh Eixenberger, Fereshteh Rajabi-Kouchi, Maryna Lazouskaya, Cadré Francis, Hailey Burgoyne, Katelyn Wada, Harish Subbaraman and David Estrada*,
{"title":"Multijet Gold Nanoparticle Inks for Additive Manufacturing of Printed and Wearable Electronics","authors":"Tony Valayil Varghese*, Josh Eixenberger, Fereshteh Rajabi-Kouchi, Maryna Lazouskaya, Cadré Francis, Hailey Burgoyne, Katelyn Wada, Harish Subbaraman and David Estrada*, ","doi":"10.1021/acsmaterialsau.3c00058","DOIUrl":null,"url":null,"abstract":"<p >Conductive and biofriendly gold nanomaterial inks are highly desirable for printed electronics, biosensors, wearable electronics, and electrochemical sensor applications. Here, we demonstrate the scalable synthesis of stable gold nanoparticle inks with low-temperature sintering using simple chemical processing steps. Multiprinter compatible aqueous gold nanomaterial inks were formulated, achieving resistivity as low as ∼10<sup>–6</sup> Ω m for 400 nm thick films sintered at 250 °C. Printed lines with a resolution of <20 μm and minimal overspray were obtained using an aerosol jet printer. The resistivity of the printed patterns reached ∼9.59 ± 1.2 × 10<sup>–8</sup> Ω m after sintering at 400 °C for 45 min. Our aqueous-formulated gold nanomaterial inks are also compatible with inkjet printing, extending the design space and manufacturability of printed and flexible electronics where metal work functions and chemically inert films are important for device applications.</p>","PeriodicalId":29798,"journal":{"name":"ACS Materials Au","volume":"4 1","pages":"65–73"},"PeriodicalIF":5.7000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialsau.3c00058","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialsau.3c00058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Conductive and biofriendly gold nanomaterial inks are highly desirable for printed electronics, biosensors, wearable electronics, and electrochemical sensor applications. Here, we demonstrate the scalable synthesis of stable gold nanoparticle inks with low-temperature sintering using simple chemical processing steps. Multiprinter compatible aqueous gold nanomaterial inks were formulated, achieving resistivity as low as ∼10–6 Ω m for 400 nm thick films sintered at 250 °C. Printed lines with a resolution of <20 μm and minimal overspray were obtained using an aerosol jet printer. The resistivity of the printed patterns reached ∼9.59 ± 1.2 × 10–8 Ω m after sintering at 400 °C for 45 min. Our aqueous-formulated gold nanomaterial inks are also compatible with inkjet printing, extending the design space and manufacturability of printed and flexible electronics where metal work functions and chemically inert films are important for device applications.
期刊介绍:
ACS Materials Au is an open access journal publishing letters articles reviews and perspectives describing high-quality research at the forefront of fundamental and applied research and at the interface between materials and other disciplines such as chemistry engineering and biology. Papers that showcase multidisciplinary and innovative materials research addressing global challenges are especially welcome. Areas of interest include but are not limited to:Design synthesis characterization and evaluation of forefront and emerging materialsUnderstanding structure property performance relationships and their underlying mechanismsDevelopment of materials for energy environmental biomedical electronic and catalytic applications