Applying Eye Tracking with Deep Learning Techniques for Early-Stage Detection of Autism Spectrum Disorders

IF 2.2 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Data Pub Date : 2023-11-03 DOI:10.3390/data8110168
Zeyad A. T. Ahmed, Eid Albalawi, Theyazn H. H. Aldhyani, Mukti E. Jadhav, Prachi Janrao, Mansour Ratib Mohammad Obeidat
{"title":"Applying Eye Tracking with Deep Learning Techniques for Early-Stage Detection of Autism Spectrum Disorders","authors":"Zeyad A. T. Ahmed, Eid Albalawi, Theyazn H. H. Aldhyani, Mukti E. Jadhav, Prachi Janrao, Mansour Ratib Mohammad Obeidat","doi":"10.3390/data8110168","DOIUrl":null,"url":null,"abstract":"Autism spectrum disorder (ASD) poses a complex challenge to researchers and practitioners, with its multifaceted etiology and varied manifestations. Timely intervention is critical in enhancing the developmental outcomes of individuals with ASD. This paper underscores the paramount significance of early detection and diagnosis as a pivotal precursor to effective intervention. To this end, integrating advanced technological tools, specifically eye-tracking technology and deep learning algorithms, is investigated for its potential to discriminate between children with ASD and their typically developing (TD) peers. By employing these methods, the research aims to contribute to refining early detection strategies and support mechanisms. This study introduces innovative deep learning models grounded in convolutional neural network (CNN) and recurrent neural network (RNN) architectures, employing an eye-tracking dataset for training. Of note, performance outcomes have been realised, with the bidirectional long short-term memory (BiLSTM) achieving an accuracy of 96.44%, the gated recurrent unit (GRU) attaining 97.49%, the CNN-LSTM hybridising to 97.94%, and the LSTM achieving the most remarkable accuracy result of 98.33%. These outcomes underscore the efficacy of the applied methodologies and the potential of advanced computational frameworks in achieving substantial accuracy levels in ASD detection and classification.","PeriodicalId":36824,"journal":{"name":"Data","volume":"11 7","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/data8110168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Autism spectrum disorder (ASD) poses a complex challenge to researchers and practitioners, with its multifaceted etiology and varied manifestations. Timely intervention is critical in enhancing the developmental outcomes of individuals with ASD. This paper underscores the paramount significance of early detection and diagnosis as a pivotal precursor to effective intervention. To this end, integrating advanced technological tools, specifically eye-tracking technology and deep learning algorithms, is investigated for its potential to discriminate between children with ASD and their typically developing (TD) peers. By employing these methods, the research aims to contribute to refining early detection strategies and support mechanisms. This study introduces innovative deep learning models grounded in convolutional neural network (CNN) and recurrent neural network (RNN) architectures, employing an eye-tracking dataset for training. Of note, performance outcomes have been realised, with the bidirectional long short-term memory (BiLSTM) achieving an accuracy of 96.44%, the gated recurrent unit (GRU) attaining 97.49%, the CNN-LSTM hybridising to 97.94%, and the LSTM achieving the most remarkable accuracy result of 98.33%. These outcomes underscore the efficacy of the applied methodologies and the potential of advanced computational frameworks in achieving substantial accuracy levels in ASD detection and classification.
眼动追踪与深度学习技术在自闭症谱系障碍早期检测中的应用
自闭症谱系障碍(Autism spectrum disorder, ASD)病因多样,表现多样,给研究者和实践者带来了复杂的挑战。及时干预对于提高自闭症患者的发育结果至关重要。本文强调了早期发现和诊断作为有效干预的关键前兆的重要意义。为此,整合先进的技术工具,特别是眼动追踪技术和深度学习算法,研究其区分自闭症儿童和正常发育儿童(TD)的潜力。通过采用这些方法,研究旨在为完善早期检测策略和支持机制做出贡献。本研究引入了基于卷积神经网络(CNN)和循环神经网络(RNN)架构的创新深度学习模型,采用眼动追踪数据集进行训练。值得注意的是,已经实现了性能结果,双向长短期记忆(BiLSTM)达到96.44%的准确率,门控循环单元(GRU)达到97.49%,CNN-LSTM混合达到97.94%,LSTM达到了最显著的准确率98.33%。这些结果强调了应用方法的有效性和先进计算框架在实现ASD检测和分类的实质性准确性水平方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Data
Data Decision Sciences-Information Systems and Management
CiteScore
4.30
自引率
3.80%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信