Effect of pH Value on the Electrical Properties of PEDOT:PSS-Based Fiber Mats

IF 4.3 Q2 ENGINEERING, CHEMICAL
Prerana Rathore,  and , Jessica D. Schiffman*, 
{"title":"Effect of pH Value on the Electrical Properties of PEDOT:PSS-Based Fiber Mats","authors":"Prerana Rathore,&nbsp; and ,&nbsp;Jessica D. Schiffman*,&nbsp;","doi":"10.1021/acsengineeringau.3c00044","DOIUrl":null,"url":null,"abstract":"<p >Nanofiber mats containing poly(3,4-ethylenedioxythiophene) (PEDOT) hold potential for use in wearable electronic applications. Unfortunately, the use of PEDOT is often limited by the acidic nature of polystyrenesulfonate (PSS), a common dispersant for PEDOT. In this study, we explored the impact of increasing the pH value of PEDOT:PSS/poly(vinyl alcohol) (PVA) precursors on the morphological and electrical properties of the resultant electrospun fibers. Specifically, electrospun nanofibers were analyzed using scanning electron microscopy, bright-field microscopy, and two-point probe measurements. We discovered that neutral and even slightly basic PEDOT:PSS/PVA precursors could be electrospun without affecting the resultant electrical properties. While cross-linking effectively stabilized the fibers, their electrical properties decreased after exposure to solutions with pH values between 5 and 11, as well as with agitated soap washing tests. Additionally, we report that the fiber mats maintained their stability after more than 3000 cycles of voltage application. These findings suggest that PEDOT:PSS-based fibers hold potential for use in wearable textile and sensor applications, where long-term durability is needed.</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.3c00044","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Engineering Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsengineeringau.3c00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nanofiber mats containing poly(3,4-ethylenedioxythiophene) (PEDOT) hold potential for use in wearable electronic applications. Unfortunately, the use of PEDOT is often limited by the acidic nature of polystyrenesulfonate (PSS), a common dispersant for PEDOT. In this study, we explored the impact of increasing the pH value of PEDOT:PSS/poly(vinyl alcohol) (PVA) precursors on the morphological and electrical properties of the resultant electrospun fibers. Specifically, electrospun nanofibers were analyzed using scanning electron microscopy, bright-field microscopy, and two-point probe measurements. We discovered that neutral and even slightly basic PEDOT:PSS/PVA precursors could be electrospun without affecting the resultant electrical properties. While cross-linking effectively stabilized the fibers, their electrical properties decreased after exposure to solutions with pH values between 5 and 11, as well as with agitated soap washing tests. Additionally, we report that the fiber mats maintained their stability after more than 3000 cycles of voltage application. These findings suggest that PEDOT:PSS-based fibers hold potential for use in wearable textile and sensor applications, where long-term durability is needed.

Abstract Image

Abstract Image

pH 值对基于 PEDOT:PSS 的纤维毡电性能的影响
含有聚(3,4-乙烯二氧噻吩)(PEDOT)的纳米纤维毡在可穿戴电子应用中具有潜在的用途。遗憾的是,PEDOT 的使用往往受到聚苯乙烯磺酸盐(PSS)酸性的限制,而 PSS 是 PEDOT 的常用分散剂。在本研究中,我们探讨了提高 PEDOT:PSS/ 聚乙烯醇 (PVA) 前体的 pH 值对电纺纤维的形态和电气性能的影响。具体来说,我们使用扫描电子显微镜、明视场显微镜和两点探针测量法分析了电纺纳米纤维。我们发现,中性甚至略带碱性的 PEDOT:PSS/PVA 前体都可以进行电纺,而不会影响所产生的电特性。虽然交联有效地稳定了纤维,但在接触 pH 值介于 5 和 11 之间的溶液以及搅拌肥皂洗涤试验后,纤维的电气性能却有所下降。此外,我们还报告称,纤维毡在经过 3000 次以上的电压循环后仍能保持稳定。这些研究结果表明,基于 PEDOT:PSS 的纤维有望用于需要长期耐久性的可穿戴纺织品和传感器应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Engineering Au
ACS Engineering Au 化学工程技术-
自引率
0.00%
发文量
0
期刊介绍: )ACS Engineering Au is an open access journal that reports significant advances in chemical engineering applied chemistry and energy covering fundamentals processes and products. The journal's broad scope includes experimental theoretical mathematical computational chemical and physical research from academic and industrial settings. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Fundamental research in such areas as thermodynamics transport phenomena (flow mixing mass & heat transfer) chemical reaction kinetics and engineering catalysis separations interfacial phenomena and materialsProcess design development and intensification (e.g. process technologies for chemicals and materials synthesis and design methods process intensification multiphase reactors scale-up systems analysis process control data correlation schemes modeling machine learning Artificial Intelligence)Product research and development involving chemical and engineering aspects (e.g. catalysts plastics elastomers fibers adhesives coatings paper membranes lubricants ceramics aerosols fluidic devices intensified process equipment)Energy and fuels (e.g. pre-treatment processing and utilization of renewable energy resources; processing and utilization of fuels; properties and structure or molecular composition of both raw fuels and refined products; fuel cells hydrogen batteries; photochemical fuel and energy production; decarbonization; electrification; microwave; cavitation)Measurement techniques computational models and data on thermo-physical thermodynamic and transport properties of materials and phase equilibrium behaviorNew methods models and tools (e.g. real-time data analytics multi-scale models physics informed machine learning models machine learning enhanced physics-based models soft sensors high-performance computing)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信