{"title":"Off-Diagonally Symmetric Domino Tilings of the Aztec Diamond","authors":"Yi-Lin Lee","doi":"10.37236/11921","DOIUrl":null,"url":null,"abstract":"We introduce a new symmetry class of domino tilings of the Aztec diamond, called the off-diagonal symmetry class, which is motivated by the off-diagonally symmetric alternating sign matrices introduced by Kuperberg in 2002. We use the method of non-intersecting lattice paths and a modification of Stembridge's Pfaffian formula for families of non-intersecting lattice paths to enumerate our new symmetry class. The number of off-diagonally symmetric domino tilings of the Aztec diamond can be expressed as a Pfaffian of a matrix whose entries satisfy a nice and simple recurrence relation.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"44 7","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37236/11921","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a new symmetry class of domino tilings of the Aztec diamond, called the off-diagonal symmetry class, which is motivated by the off-diagonally symmetric alternating sign matrices introduced by Kuperberg in 2002. We use the method of non-intersecting lattice paths and a modification of Stembridge's Pfaffian formula for families of non-intersecting lattice paths to enumerate our new symmetry class. The number of off-diagonally symmetric domino tilings of the Aztec diamond can be expressed as a Pfaffian of a matrix whose entries satisfy a nice and simple recurrence relation.
期刊介绍:
The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.