Aiming for Maximized and Reproducible Enhancements in the Obstacle Race of SERS

IF 4.6 Q1 CHEMISTRY, ANALYTICAL
Priyanka Dey*, 
{"title":"Aiming for Maximized and Reproducible Enhancements in the Obstacle Race of SERS","authors":"Priyanka Dey*,&nbsp;","doi":"10.1021/acsmeasuresciau.3c00037","DOIUrl":null,"url":null,"abstract":"<p >Surface enhanced Raman scattering (SERS), since its discovery in the mid-1970s, has taken on many roles in the world of analytical measurement science. From identifying known and unknown chemicals in mixtures such as pharmaceutical and environmental samples to enabling qualitative and quantitative analysis of biomolecules and biomedical disease markers (or biomarkers), furthermore expanding to tracking nanostructures in vivo for medical diagnosis and therapy. This is because SERS combines the inherent power of Raman scattering capable of molecular species identification, topped with tremendous amplification in the Raman signal intensity when the molecule of interest is positioned near plasmonic nanostructures. The higher the SERS signal amplification, the lower the limit of detection (LOD) that could be achieved for the above applications. Therefore, improving SERS sensing efficiencies is vital. The signal reproducibility and SERS enhancement factor (EF) heavily rely on plasmonic nanostructure design, which has led to tremendous work in the field. But SERS signal and EF reproducibility remain key limitations for its wider market usability. This Review will scrutinize factors, some recognized and some often overlooked, that dictate the SERS signal and are of utmost importance to enable reproducible SERS EFs. Most of the factors pertain to colloidal labeled SERS. Some critically reviewed factors include the nanostructure’s surface area as a limiting factor, SERS hot-spots including optimizing the SERS EF within the hot-spot volume and positioning labels, properties of label molecules governing molecule orientation in hot-spots, and resonance effects. A better understanding of these factors will enable improved optimization and control of the experimental SERS, enabling extremely sensitive LODs without overestimating the SERS EFs. These are crucial steps toward identification and reproducible quantification in SERS sensing.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"3 6","pages":"434–443"},"PeriodicalIF":4.6000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00037","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.3c00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Surface enhanced Raman scattering (SERS), since its discovery in the mid-1970s, has taken on many roles in the world of analytical measurement science. From identifying known and unknown chemicals in mixtures such as pharmaceutical and environmental samples to enabling qualitative and quantitative analysis of biomolecules and biomedical disease markers (or biomarkers), furthermore expanding to tracking nanostructures in vivo for medical diagnosis and therapy. This is because SERS combines the inherent power of Raman scattering capable of molecular species identification, topped with tremendous amplification in the Raman signal intensity when the molecule of interest is positioned near plasmonic nanostructures. The higher the SERS signal amplification, the lower the limit of detection (LOD) that could be achieved for the above applications. Therefore, improving SERS sensing efficiencies is vital. The signal reproducibility and SERS enhancement factor (EF) heavily rely on plasmonic nanostructure design, which has led to tremendous work in the field. But SERS signal and EF reproducibility remain key limitations for its wider market usability. This Review will scrutinize factors, some recognized and some often overlooked, that dictate the SERS signal and are of utmost importance to enable reproducible SERS EFs. Most of the factors pertain to colloidal labeled SERS. Some critically reviewed factors include the nanostructure’s surface area as a limiting factor, SERS hot-spots including optimizing the SERS EF within the hot-spot volume and positioning labels, properties of label molecules governing molecule orientation in hot-spots, and resonance effects. A better understanding of these factors will enable improved optimization and control of the experimental SERS, enabling extremely sensitive LODs without overestimating the SERS EFs. These are crucial steps toward identification and reproducible quantification in SERS sensing.

Abstract Image

Abstract Image

在 SERS 的障碍赛中追求最大化和可重复的增强效果
自 20 世纪 70 年代中期发现表面增强拉曼散射(SERS)以来,它在分析测量科学领域发挥了许多作用。从识别医药和环境样品等混合物中的已知和未知化学物质,到对生物大分子和生物医学疾病标志物(或生物标记物)进行定性和定量分析,再到追踪体内纳米结构以进行医学诊断和治疗。这是因为 SERS 结合了拉曼散射固有的分子物种识别能力,当感兴趣的分子靠近等离子纳米结构时,拉曼信号强度会被极大放大。SERS 信号放大率越高,上述应用所能达到的检测限(LOD)就越低。因此,提高 SERS 传感效率至关重要。信号重现性和 SERS 增强因子(EF)在很大程度上依赖于等离子纳米结构的设计,这也导致了该领域的大量研究工作。但是,SERS 信号和 EF 可重复性仍然是其广泛市场应用的关键限制因素。本综述将仔细研究决定 SERS 信号的因素,其中有些是公认的,有些则经常被忽视,而这些因素对于实现 SERS EF 的可重复性至关重要。大多数因素都与胶体标记 SERS 有关。一些重要因素包括作为限制因素的纳米结构表面积、SERS 热点(包括优化热点体积内的 SERS EF 和定位标签)、标签分子在热点中的取向特性以及共振效应。更好地了解这些因素将有助于改进对 SERS 实验的优化和控制,从而在不高估 SERS EF 的情况下实现极其灵敏的 LOD。这些都是在 SERS 传感中实现识别和可重复量化的关键步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Measurement Science Au
ACS Measurement Science Au 化学计量学-
CiteScore
5.20
自引率
0.00%
发文量
0
期刊介绍: ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信