{"title":"Examining the fire risk in London dwellings using the London Fire Brigade Incident database","authors":"Matthew Bonner, Leonardo Caracci, Guillermo Rein","doi":"10.1002/fam.3177","DOIUrl":null,"url":null,"abstract":"<p>Analysis of the Fire Brigade's database of fires in London between 2009 and 2020 provided insight into the level of fire safety in the city and how it varies across different types of dwellings and different levels of protection. Regarding the number of fires, fatalities, and injuries, fire safety in London has significantly improved on average over these years. However, average trends cannot analyze catastrophic fires with multiple fatalities, like at Grenfell Tower in 2017, as these events are too rare to form a suitable sample size. Dwelling fires are the most lethal in London: despite accounting for only 28% of fires, they lead to 87% of fatalities and 83% of injuries. The odds of a dwelling fire becoming fatal in London fell from 1 in 174 in 2009 to 1 in 208 in 2019, a decrease of 16%. The total number of fires has decreased over this period, and the number of fires where an alarm was raised has increased, suggesting that the prevention and detection layers of fire safety have improved, while our analysis suggests that the level of protection from the compartmentation and evacuation layers has remained constant over time. An analysis of the different layers of fire protection suggests that compartmentation was the most impactful layer, with a failure in compartmentation increasing the odds of a fire being fatal by 1.5 to 5 times. Overall, this analysis shows that the fire hazard to Londoners in general is low and the lowest since 2009; however, there is still a threat that should not be understated.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"48 2","pages":"192-207"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fam.3177","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire and Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fam.3177","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Analysis of the Fire Brigade's database of fires in London between 2009 and 2020 provided insight into the level of fire safety in the city and how it varies across different types of dwellings and different levels of protection. Regarding the number of fires, fatalities, and injuries, fire safety in London has significantly improved on average over these years. However, average trends cannot analyze catastrophic fires with multiple fatalities, like at Grenfell Tower in 2017, as these events are too rare to form a suitable sample size. Dwelling fires are the most lethal in London: despite accounting for only 28% of fires, they lead to 87% of fatalities and 83% of injuries. The odds of a dwelling fire becoming fatal in London fell from 1 in 174 in 2009 to 1 in 208 in 2019, a decrease of 16%. The total number of fires has decreased over this period, and the number of fires where an alarm was raised has increased, suggesting that the prevention and detection layers of fire safety have improved, while our analysis suggests that the level of protection from the compartmentation and evacuation layers has remained constant over time. An analysis of the different layers of fire protection suggests that compartmentation was the most impactful layer, with a failure in compartmentation increasing the odds of a fire being fatal by 1.5 to 5 times. Overall, this analysis shows that the fire hazard to Londoners in general is low and the lowest since 2009; however, there is still a threat that should not be understated.
期刊介绍:
Fire and Materials is an international journal for scientific and technological communications directed at the fire properties of materials and the products into which they are made. This covers all aspects of the polymer field and the end uses where polymers find application; the important developments in the fields of natural products - wood and cellulosics; non-polymeric materials - metals and ceramics; as well as the chemistry and industrial applications of fire retardant chemicals.
Contributions will be particularly welcomed on heat release; properties of combustion products - smoke opacity, toxicity and corrosivity; modelling and testing.