Water-soluble bio-sourced resist interactions with fluorinated etching plasmas during the photolithography process

Paule Durin, Olha Sysova, Alexandre Téolis, Stéphane Trombotto, Samar Hajjar-Garreau, Thierry Delair, Isabelle Servin, Névine Rochat, Raluca Tiron, Corinne Gablin, Olivier Soppera, Aziz Benamrouche, Thomas Géhin, Didier Léonard, Jean-Louis Leclercq, Yann Chevolot
{"title":"Water-soluble bio-sourced resist interactions with fluorinated etching plasmas during the photolithography process","authors":"Paule Durin, Olha Sysova, Alexandre Téolis, Stéphane Trombotto, Samar Hajjar-Garreau, Thierry Delair, Isabelle Servin, Névine Rochat, Raluca Tiron, Corinne Gablin, Olivier Soppera, Aziz Benamrouche, Thomas Géhin, Didier Léonard, Jean-Louis Leclercq, Yann Chevolot","doi":"10.1116/6.0002934","DOIUrl":null,"url":null,"abstract":"Lithography is one of the key steps in micro/nanofabrication, which involves the use of oil-based resists, organic solvents, and toxic chemicals. Nowadays, environmental issues and regulation have raised the need for developing greener materials and processes. Therefore, efforts have been devoted to developing greener resists, in particular, resists based on water-soluble bio-sourced polymers. Among these biopolymers, polysaccharides have gained a strong interest. However, their interaction with silica etching plasmas, in particular, fluorinated plasmas, remains scarcely studied and contradictory results are found in the literature. The present contribution reports on the study of the interaction of two chitosans exhibiting different degrees of N-acetylation with SF6/Ar and CHF3 etching plasmas. The surface modifications and in-depth modifications were studied with x-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, infrared spectroscopy, water contact angle, and size-exclusion chromatography. The effect of neutrals, ions, and vacuum ultraviolet (VUV) was considered. Our results suggest that the chitosan selectivity is greatly influenced by the deposition of a fluorocarbon film and that VUV seems to be involved in scissions of the polymer chains. No significant difference between the two chitosans was observed.","PeriodicalId":17571,"journal":{"name":"Journal of Vacuum Science and Technology","volume":"332 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0002934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lithography is one of the key steps in micro/nanofabrication, which involves the use of oil-based resists, organic solvents, and toxic chemicals. Nowadays, environmental issues and regulation have raised the need for developing greener materials and processes. Therefore, efforts have been devoted to developing greener resists, in particular, resists based on water-soluble bio-sourced polymers. Among these biopolymers, polysaccharides have gained a strong interest. However, their interaction with silica etching plasmas, in particular, fluorinated plasmas, remains scarcely studied and contradictory results are found in the literature. The present contribution reports on the study of the interaction of two chitosans exhibiting different degrees of N-acetylation with SF6/Ar and CHF3 etching plasmas. The surface modifications and in-depth modifications were studied with x-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, infrared spectroscopy, water contact angle, and size-exclusion chromatography. The effect of neutrals, ions, and vacuum ultraviolet (VUV) was considered. Our results suggest that the chitosan selectivity is greatly influenced by the deposition of a fluorocarbon film and that VUV seems to be involved in scissions of the polymer chains. No significant difference between the two chitosans was observed.
水溶性生物源抗蚀剂与氟化蚀刻等离子体在光刻过程中的相互作用
光刻是微/纳米制造的关键步骤之一,涉及到油基抗蚀剂、有机溶剂和有毒化学品的使用。如今,环境问题和法规已经提出了开发更环保的材料和工艺的需要。因此,人们一直致力于开发更环保的抗蚀剂,特别是基于水溶性生物源聚合物的抗蚀剂。在这些生物聚合物中,多糖获得了强烈的兴趣。然而,它们与硅蚀刻等离子体,特别是氟化等离子体的相互作用仍然很少研究,文献中发现了相互矛盾的结果。本文报道了两种不同程度n -乙酰化的壳聚糖与SF6/Ar和CHF3刻蚀等离子体的相互作用。采用x射线光电子能谱、飞行时间二次离子质谱、红外光谱、水接触角和阻垢层析等方法研究了表面改性和深度改性。考虑了中性、离子和真空紫外线(VUV)的影响。我们的研究结果表明,壳聚糖的选择性很大程度上受到氟碳薄膜沉积的影响,并且VUV似乎参与了聚合物链的断裂。两种壳聚糖之间无显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信