Jeremy R. Porter, Michael L. Marston, Evelyn Shu, Mark Bauer, Kelvin Lai, Bradley Wilson, Mariah Pope
{"title":"Estimating Pluvial Depth–Damage Functions for Areas within the United States Using Historical Claims Data","authors":"Jeremy R. Porter, Michael L. Marston, Evelyn Shu, Mark Bauer, Kelvin Lai, Bradley Wilson, Mariah Pope","doi":"10.1061/nhrefo.nheng-1543","DOIUrl":null,"url":null,"abstract":"Flooding has been the most costly natural disaster over the last 2 decades within the US. Therefore, recent research has focused on more accurately predicting economic losses from flooding to aid decision makers and mitigate economic exposure. For this, depth–damage functions have commonly been employed to predict the relative or absolute damage to buildings caused by different magnitudes of flooding. Although depth–damage functions, such as those adopted by the US Army Corps of Engineers, are widely available for fluvial and coastal flooding, less work has been done to develop functions for pluvial-induced flooding. Here, we use a database containing 13.5 million claims to develop pluvial depth–damage functions. For this, recently released flood hazard data are utilized to identify claims within the database that are likely related to pluvial flooding. We employed two types of regression models to fit the depth–damage functions. Secondarily, we developed an automated valuation model (AVM) to estimate building values across the state of New Jersey. These building values were then combined with flood hazard layers in order to apply the depth–damage functions and compute an aggregate annualized loss for New Jersey. The results indicated moderate agreement between the observed damage within the state of New Jersey and that computed by applying the study-developed depth–damage curves to buildings within the state using pluvial flood hazard layers. It is anticipated that the depth–damage functions developed by this research will aid future work in more accurately quantifying the economic risks associated with flooding across the US.","PeriodicalId":51262,"journal":{"name":"Natural Hazards Review","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Hazards Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1061/nhrefo.nheng-1543","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1
Abstract
Flooding has been the most costly natural disaster over the last 2 decades within the US. Therefore, recent research has focused on more accurately predicting economic losses from flooding to aid decision makers and mitigate economic exposure. For this, depth–damage functions have commonly been employed to predict the relative or absolute damage to buildings caused by different magnitudes of flooding. Although depth–damage functions, such as those adopted by the US Army Corps of Engineers, are widely available for fluvial and coastal flooding, less work has been done to develop functions for pluvial-induced flooding. Here, we use a database containing 13.5 million claims to develop pluvial depth–damage functions. For this, recently released flood hazard data are utilized to identify claims within the database that are likely related to pluvial flooding. We employed two types of regression models to fit the depth–damage functions. Secondarily, we developed an automated valuation model (AVM) to estimate building values across the state of New Jersey. These building values were then combined with flood hazard layers in order to apply the depth–damage functions and compute an aggregate annualized loss for New Jersey. The results indicated moderate agreement between the observed damage within the state of New Jersey and that computed by applying the study-developed depth–damage curves to buildings within the state using pluvial flood hazard layers. It is anticipated that the depth–damage functions developed by this research will aid future work in more accurately quantifying the economic risks associated with flooding across the US.
期刊介绍:
The Natural Hazards Review addresses the range of events, processes, and consequences that occur when natural hazards interact with the physical, social, economic, and engineered dimensions of communities and the people who live, work, and play in them. As these conditions interact and change, the impact on human communities increases in size, scale, and scope. Such interactions necessarily need to be analyzed from an interdisciplinary perspective that includes both social and technical measures. For decision makers, the risk presents the challenge of managing known hazards, but unknown consequences in time of occurrence, scale of impact, and level of disruption in actual communities with limited resources. The journal is dedicated to bringing together the physical, social, and behavioral sciences; engineering; and the regulatory and policy environments to provide a forum for cutting edge, holistic, and cross-disciplinary approaches to anticipating risk, loss, and cost reduction from natural hazards. The journal welcomes rigorous research on the intersection between social and technical systems that advances concepts of resilience within lifeline and infrastructure systems and the organizations that manage them for all hazards. It offers a professional forum for researchers and practitioners working together to publish the results of truly interdisciplinary and partnered approaches to the anticipation of risk, loss reduction, and community resilience. Engineering topics covered include the characterization of hazard forces and the planning, design, construction, maintenance, performance, and use of structures in the physical environment. Social and behavioral sciences topics include analysis of the impact of hazards on communities and the organizations that seek to mitigate and manage response to hazards.