Hydrodynamic and dissolved oxygen–biochemical oxygen demand transport characteristics at the river confluence in China's largest alluvial plain—A modeling study
Xia Shen, Kai Wang, Sheng Li, Dengke Qing, Weizheng Gao, Dehong Li, Liwei Cao
{"title":"Hydrodynamic and dissolved oxygen–biochemical oxygen demand transport characteristics at the river confluence in China's largest alluvial plain—A modeling study","authors":"Xia Shen, Kai Wang, Sheng Li, Dengke Qing, Weizheng Gao, Dehong Li, Liwei Cao","doi":"10.1111/1752-1688.13171","DOIUrl":null,"url":null,"abstract":"<p>The Yellow River flows through multiple provinces in China, shaping the North China Plain, the largest alluvial plain in China. As the control node of basin ecological environment, the confluence of Weihe River and Yellow River is deemed as the gateway to North China Plain. In this study, a numerical simulation of the Weihe River–Yellow River confluence is conducted using a 2D hydrodynamic model and a coupled transport model for dissolved oxygen–biochemical oxygen demand. The results show that: (i) The typical flow field with multiple backflow areas is formed at the stagnant area where main stream and tributary converge and abrupt channel change area in different hydrological periods. The spur dike here mainly affects the velocity of the Weihe River outlet. (ii) There is an obvious concentration transition mixing zone downstream of the confluence, and the width of the mixing zone gradually linear increases with the direction of water flow. (iii) The self-purification ability of the confluence is strongest in dry period, weaker in level period, and weakest in wet period. Water bodies have stronger self-purification capacity on riverbanks than in the middle, and it is stronger in the upper reaches of Weihe River compared to Yellow River. Lower reaches also have a stronger self-purification capacity than upper reaches. The study results can serve as a scientific reference for protecting the ecological environment of the Yellow River.</p>","PeriodicalId":17234,"journal":{"name":"Journal of The American Water Resources Association","volume":"59 6","pages":"1477-1492"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Water Resources Association","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1752-1688.13171","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The Yellow River flows through multiple provinces in China, shaping the North China Plain, the largest alluvial plain in China. As the control node of basin ecological environment, the confluence of Weihe River and Yellow River is deemed as the gateway to North China Plain. In this study, a numerical simulation of the Weihe River–Yellow River confluence is conducted using a 2D hydrodynamic model and a coupled transport model for dissolved oxygen–biochemical oxygen demand. The results show that: (i) The typical flow field with multiple backflow areas is formed at the stagnant area where main stream and tributary converge and abrupt channel change area in different hydrological periods. The spur dike here mainly affects the velocity of the Weihe River outlet. (ii) There is an obvious concentration transition mixing zone downstream of the confluence, and the width of the mixing zone gradually linear increases with the direction of water flow. (iii) The self-purification ability of the confluence is strongest in dry period, weaker in level period, and weakest in wet period. Water bodies have stronger self-purification capacity on riverbanks than in the middle, and it is stronger in the upper reaches of Weihe River compared to Yellow River. Lower reaches also have a stronger self-purification capacity than upper reaches. The study results can serve as a scientific reference for protecting the ecological environment of the Yellow River.
期刊介绍:
JAWRA seeks to be the preeminent scholarly publication on multidisciplinary water resources issues. JAWRA papers present ideas derived from multiple disciplines woven together to give insight into a critical water issue, or are based primarily upon a single discipline with important applications to other disciplines. Papers often cover the topics of recent AWRA conferences such as riparian ecology, geographic information systems, adaptive management, and water policy.
JAWRA authors present work within their disciplinary fields to a broader audience. Our Associate Editors and reviewers reflect this diversity to ensure a knowledgeable and fair review of a broad range of topics. We particularly encourage submissions of papers which impart a ''take home message'' our readers can use.