A Robust Gaze Estimation Approach via Exploring Relevant Electrooculogram Features and Optimal Electrodes Placements

IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Zheng Zeng;Linkai Tao;Hangyu Zhu;Yunfeng Zhu;Long Meng;Jiahao Fan;Chen Chen;Wei Chen
{"title":"A Robust Gaze Estimation Approach via Exploring Relevant Electrooculogram Features and Optimal Electrodes Placements","authors":"Zheng Zeng;Linkai Tao;Hangyu Zhu;Yunfeng Zhu;Long Meng;Jiahao Fan;Chen Chen;Wei Chen","doi":"10.1109/JTEHM.2023.3320713","DOIUrl":null,"url":null,"abstract":"Gaze estimation, as a technique that reflects individual attention, can be used for disability assistance and assisting physicians in diagnosing diseases such as autism spectrum disorder (ASD), Parkinson’s disease, and attention deficit hyperactivity disorder (ADHD). Various techniques have been proposed for gaze estimation and achieved high resolution. Among these approaches, electrooculography (EOG)-based gaze estimation, as an economical and effective method, offers a promising solution for practical applications. Objective: In this paper, we systematically investigated the possible EOG electrode locations which are spatially distributed around the orbital cavity. Afterward, quantities of informative features to characterize physiological information of eye movement from the temporal-spectral domain are extracted from the seven differential channels. Methods and procedures: To select the optimum channels and relevant features, and eliminate irrelevant information, a heuristical search algorithm (i.e., forward stepwise strategy) is applied. Subsequently, a comparative analysis of the impacts of electrode placement and feature contributions on gaze estimation is evaluated via 6 classic models with 18 subjects. Results: Experimental results showed that the promising performance was achieved both in the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) within a wide gaze that ranges from −50° to +50°. The MAE and RMSE can be improved to 2.80° and 3.74° ultimately, while only using 10 features extracted from 2 channels. Compared with the prevailing EOG-based techniques, the performance improvement of MAE and RMSE range from 0.70° to 5.48° and 0.66° to 5.42°, respectively. Conclusion: We proposed a robust EOG-based gaze estimation approach by systematically investigating the optimal channel/feature combination. The experimental results indicated not only the superiority of the proposed approach but also its potential for clinical application. Clinical and translational impact statement: Accurate gaze estimation is a key step for assisting disabilities and accurate diagnosis of various diseases including ASD, Parkinson’s disease, and ADHD. The proposed approach can accurately estimate the points of gaze via EOG signals, and thus has the potential for various related medical applications.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"56-65"},"PeriodicalIF":3.7000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10268026","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10268026/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Gaze estimation, as a technique that reflects individual attention, can be used for disability assistance and assisting physicians in diagnosing diseases such as autism spectrum disorder (ASD), Parkinson’s disease, and attention deficit hyperactivity disorder (ADHD). Various techniques have been proposed for gaze estimation and achieved high resolution. Among these approaches, electrooculography (EOG)-based gaze estimation, as an economical and effective method, offers a promising solution for practical applications. Objective: In this paper, we systematically investigated the possible EOG electrode locations which are spatially distributed around the orbital cavity. Afterward, quantities of informative features to characterize physiological information of eye movement from the temporal-spectral domain are extracted from the seven differential channels. Methods and procedures: To select the optimum channels and relevant features, and eliminate irrelevant information, a heuristical search algorithm (i.e., forward stepwise strategy) is applied. Subsequently, a comparative analysis of the impacts of electrode placement and feature contributions on gaze estimation is evaluated via 6 classic models with 18 subjects. Results: Experimental results showed that the promising performance was achieved both in the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) within a wide gaze that ranges from −50° to +50°. The MAE and RMSE can be improved to 2.80° and 3.74° ultimately, while only using 10 features extracted from 2 channels. Compared with the prevailing EOG-based techniques, the performance improvement of MAE and RMSE range from 0.70° to 5.48° and 0.66° to 5.42°, respectively. Conclusion: We proposed a robust EOG-based gaze estimation approach by systematically investigating the optimal channel/feature combination. The experimental results indicated not only the superiority of the proposed approach but also its potential for clinical application. Clinical and translational impact statement: Accurate gaze estimation is a key step for assisting disabilities and accurate diagnosis of various diseases including ASD, Parkinson’s disease, and ADHD. The proposed approach can accurately estimate the points of gaze via EOG signals, and thus has the potential for various related medical applications.
一种基于眼电图特征和最佳电极位置的鲁棒注视估计方法
注视估计作为一种反映个体注意力的技术,可以用于残疾援助和协助医生诊断自闭症谱系障碍(ASD)、帕金森病和注意缺陷多动障碍(ADHD)等疾病。人们提出了各种各样的注视估计技术,并实现了高分辨率的注视估计。其中,基于眼电图(EOG)的注视估计作为一种经济有效的方法,在实际应用中具有广阔的应用前景。目的:系统探讨眼电电极在眶腔周围空间分布的可能位置。然后,从七个差分通道中提取大量的信息特征来表征眼动的时间谱域生理信息。方法和步骤:采用启发式搜索算法(即前向逐步搜索策略),选择最优通道和相关特征,剔除不相关信息。随后,通过6个经典模型对18个被试进行了电极放置和特征贡献对注视估计的影响对比分析。结果:实验结果表明,在−50°到+50°的宽凝视范围内,平均绝对误差(MAE)和均方根误差(RMSE)都取得了令人满意的性能。当只使用从2个通道中提取的10个特征时,MAE和RMSE最终可以提高到2.80°和3.74°。与现有的基于eeg的技术相比,MAE和RMSE的性能改进幅度分别为0.70°~ 5.48°和0.66°~ 5.42°。结论:通过系统地研究最佳通道/特征组合,提出了一种鲁棒的基于眼电信号的凝视估计方法。实验结果表明,该方法不仅具有优越性,而且具有临床应用的潜力。临床和翻译影响声明:准确的注视估计是帮助残疾和准确诊断各种疾病的关键步骤,包括ASD,帕金森病和ADHD。该方法可以通过眼电信号准确地估计注视点,因此具有各种相关医学应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.40
自引率
2.90%
发文量
65
审稿时长
27 weeks
期刊介绍: The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信