{"title":"Aspects of using of sheet thermomigration of the Al+Si three-dimensional liquid zone to form semiconductor power devices","authors":"O. S. Polukhin, V. V. Kravchina","doi":"10.15222/tkea2023.1-2.34","DOIUrl":null,"url":null,"abstract":"The paper considers using the technology of sheet thermomigration of three-dimensional zones, which implements p+-Si* liquid epitaxy on an n-Si wafer, to produce power semiconductor devices with crystals having thinned layers of high-resistive n-Si base, which are surrounded by p+-Si* side insulation regions, and thickened p+-Si* emitter layers. This technology, which has a number of advantages, was used to create diode arrays in n-Si with a specific resistance of 20 Ω•cm. For recrystallization, p+-Si wafers with a resistivity of 0.005 Ω•cm were used. The produced direct polarity diodes had a breakdown voltage of 1000 V, a forward voltage drop of 1.17 V at a current density of 2.0 A/mm2, and a reverse resistance recovery time of trr = 1.5 µs. Additional use of the technology of creation of recombination centers allowed to further improve trr to 0.5 μs.","PeriodicalId":30281,"journal":{"name":"Tekhnologiya i Konstruirovanie v Elektronnoi Apparature","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tekhnologiya i Konstruirovanie v Elektronnoi Apparature","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15222/tkea2023.1-2.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The paper considers using the technology of sheet thermomigration of three-dimensional zones, which implements p+-Si* liquid epitaxy on an n-Si wafer, to produce power semiconductor devices with crystals having thinned layers of high-resistive n-Si base, which are surrounded by p+-Si* side insulation regions, and thickened p+-Si* emitter layers. This technology, which has a number of advantages, was used to create diode arrays in n-Si with a specific resistance of 20 Ω•cm. For recrystallization, p+-Si wafers with a resistivity of 0.005 Ω•cm were used. The produced direct polarity diodes had a breakdown voltage of 1000 V, a forward voltage drop of 1.17 V at a current density of 2.0 A/mm2, and a reverse resistance recovery time of trr = 1.5 µs. Additional use of the technology of creation of recombination centers allowed to further improve trr to 0.5 μs.