Wei Li;Cheng Fang;Zhihao Zhu;Chuyi Chen;Aiguo Song
{"title":"Fractal Spiking Neural Network Scheme for EEG-Based Emotion Recognition","authors":"Wei Li;Cheng Fang;Zhihao Zhu;Chuyi Chen;Aiguo Song","doi":"10.1109/JTEHM.2023.3320132","DOIUrl":null,"url":null,"abstract":"Electroencephalogram (EEG)-based emotion recognition is of great significance for aiding in clinical diagnosis, treatment, nursing and rehabilitation. Current research on this issue mainly focuses on utilizing various network architectures with different types of neurons to exploit the temporal, spectral, or spatial information from EEG for classification. However, most studies fail to take full advantage of the useful Temporal-Spectral-Spatial (TSS) information of EEG signals. In this paper, we propose a novel and effective Fractal Spike Neural Network (Fractal-SNN) scheme, which can exploit the multi-scale TSS information from EEG, for emotion recognition. Our designed Fractal-SNN block in the proposed scheme approximately simulates the biological neural connection structures based on spiking neurons and a new fractal rule, allowing for the extraction of discriminative multi-scale TSS features from the signals. Our designed training technique, inverted drop-path, can enhance the generalization ability of the Fractal-SNN scheme. Sufficient experiments on four public benchmark databases, DREAMER, DEAP, SEED-IV and MPED, under the subject-dependent protocols demonstrate the superiority of the proposed scheme over the related advanced methods. In summary, the proposed scheme provides a promising solution for EEG-based emotion recognition.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"106-118"},"PeriodicalIF":3.7000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10266337","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10266337/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electroencephalogram (EEG)-based emotion recognition is of great significance for aiding in clinical diagnosis, treatment, nursing and rehabilitation. Current research on this issue mainly focuses on utilizing various network architectures with different types of neurons to exploit the temporal, spectral, or spatial information from EEG for classification. However, most studies fail to take full advantage of the useful Temporal-Spectral-Spatial (TSS) information of EEG signals. In this paper, we propose a novel and effective Fractal Spike Neural Network (Fractal-SNN) scheme, which can exploit the multi-scale TSS information from EEG, for emotion recognition. Our designed Fractal-SNN block in the proposed scheme approximately simulates the biological neural connection structures based on spiking neurons and a new fractal rule, allowing for the extraction of discriminative multi-scale TSS features from the signals. Our designed training technique, inverted drop-path, can enhance the generalization ability of the Fractal-SNN scheme. Sufficient experiments on four public benchmark databases, DREAMER, DEAP, SEED-IV and MPED, under the subject-dependent protocols demonstrate the superiority of the proposed scheme over the related advanced methods. In summary, the proposed scheme provides a promising solution for EEG-based emotion recognition.
期刊介绍:
The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.