{"title":"Environmental Carriers for Metal Nanoparticles: Transport, Fate, and Eco-risks","authors":"Ziyi Liu, Siying Ying, Yuelu Jiang, Haruka Takeuchi, Yuxiong Huang","doi":"10.1007/s44169-023-00046-w","DOIUrl":null,"url":null,"abstract":"The occurrence of metal nanoparticles (MNPs) is an established environmental menace. After MNPs are released into the environment, they can interact with surrounding components and further be embedded within environmental substances, forming MNPs-carrier composites. Many studies have documented MNPs as individual particles. Yet, the specific impacts of environmental substances on the transport, fate, and eco-risks of MNPs-carrier composites have not been systematically analyzed. Here, we conducted a comprehensive review to illustrate the environmental carrier role for MNPs by different environmental substances and components, influencing their occurrence, transport route, transformation, and eco-effect, which calls for a reconsideration of the MNPs’ eco-/health-connectivity. Studies on MNPs’ environmental carrier in primary environmental domains reveal that in the atmosphere, MNPs-carrier composites are from nature-originated particulates followed by anthropogenic sources (e.g., traffic and industry exhausts); in the hydrosphere, various components (e.g., natural organic matter, extracellular polymeric substances, and proteins) can act as major carriers for MNPs; in the biosphere, microorganism and plant tissues can carry MNP-composites, which can be bioaccumulated and biomagnified through trophic transfer. Moreover, MNPs-carrier composites undergo distinct biogeochemical transformations in different environmental components, including aggregation, sedimentation, chemical transformation and dissolution, and the consequential biotransformation. Carriers’ impacts on MNPs’ environmental behavior manifested in changed bioavailability with widespread ecotoxicity via cellular uptake, oxidative stress and metal ions release, as well as in human health with adverse effects. Overall, this review can facilitate the understanding of MNPs-carrier composites’ origin, transformation, fate, and eco-/health risks in the environment, proposing future research needs.","PeriodicalId":21182,"journal":{"name":"Reviews of environmental contamination and toxicology","volume":"39 1","pages":"0"},"PeriodicalIF":6.1000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of environmental contamination and toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44169-023-00046-w","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The occurrence of metal nanoparticles (MNPs) is an established environmental menace. After MNPs are released into the environment, they can interact with surrounding components and further be embedded within environmental substances, forming MNPs-carrier composites. Many studies have documented MNPs as individual particles. Yet, the specific impacts of environmental substances on the transport, fate, and eco-risks of MNPs-carrier composites have not been systematically analyzed. Here, we conducted a comprehensive review to illustrate the environmental carrier role for MNPs by different environmental substances and components, influencing their occurrence, transport route, transformation, and eco-effect, which calls for a reconsideration of the MNPs’ eco-/health-connectivity. Studies on MNPs’ environmental carrier in primary environmental domains reveal that in the atmosphere, MNPs-carrier composites are from nature-originated particulates followed by anthropogenic sources (e.g., traffic and industry exhausts); in the hydrosphere, various components (e.g., natural organic matter, extracellular polymeric substances, and proteins) can act as major carriers for MNPs; in the biosphere, microorganism and plant tissues can carry MNP-composites, which can be bioaccumulated and biomagnified through trophic transfer. Moreover, MNPs-carrier composites undergo distinct biogeochemical transformations in different environmental components, including aggregation, sedimentation, chemical transformation and dissolution, and the consequential biotransformation. Carriers’ impacts on MNPs’ environmental behavior manifested in changed bioavailability with widespread ecotoxicity via cellular uptake, oxidative stress and metal ions release, as well as in human health with adverse effects. Overall, this review can facilitate the understanding of MNPs-carrier composites’ origin, transformation, fate, and eco-/health risks in the environment, proposing future research needs.
期刊介绍:
Reviews of Environmental Contamination and Toxicology publishes reviews pertaining to the sources, transport, fate and effects of contaminants in the environment. The journal provides a place for the publication of critical reviews of the current knowledge and understanding of environmental sciences in order to provide insight into contaminant pathways, fate and behavior in environmental compartments and the possible consequences of their presence, with multidisciplinary contributions from the fields of analytical chemistry, biochemistry, biology, ecology, molecular and cellular biology (in an environmental context), and human, wildlife and environmental toxicology.
•Standing on a 55+ year history of publishing environmental toxicology reviews
•Now publishing in journal format boasting rigorous review and expanded editorial board
•Publishing home for extensive environmental reviews dealing with sources, transport, fate and effect of contaminants
•Through Springer Compact agreements, authors from participating institutions can publish Open Choice at no cost to the authors