{"title":"Small-Scale Wind Tunnel for the Investigation of the Influence of Environmental Conditions on the Performance of Building Materials","authors":"R. Cacciotti, B. Wolf, M. Macháček","doi":"10.1007/s40799-023-00672-y","DOIUrl":null,"url":null,"abstract":"<div><p>Climate significantly affects the performance of building materials and its changing patterns are posed to increasingly exacerbate the projected impacts. Prevention strategies are indeed necessary to ensure avoiding excessive degradation and serious damage to the built environment. In this context, innovative and accessible methodologies and tools are required to investigate and characterize the interaction between material properties and climatic factors. This paper presents an innovative device for the simulation of natural ventilation, relative humidity and temperature fluctuations and for evaluating the performance of building materials subjected to different environmental scenarios. The presented results include the design, construction and validation of a small-scale wind tunnel (2 m × 1.8 m ca. vertical orientation). Key findings outline the adequacy of the tool in reproducing a stable, quality airflow with the following characteristics: achievable operational airflow speed ranges between 0.2 and 0.7 m/s, safe operational temperature is included between 10℃ and 35℃ and allowable operational relative humidity varies between 30 and 99%. Advantages and limitations for laboratory applications are outlined in the paper and future work is also suggested.</p></div>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"48 3","pages":"485 - 499"},"PeriodicalIF":1.5000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Techniques","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40799-023-00672-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Climate significantly affects the performance of building materials and its changing patterns are posed to increasingly exacerbate the projected impacts. Prevention strategies are indeed necessary to ensure avoiding excessive degradation and serious damage to the built environment. In this context, innovative and accessible methodologies and tools are required to investigate and characterize the interaction between material properties and climatic factors. This paper presents an innovative device for the simulation of natural ventilation, relative humidity and temperature fluctuations and for evaluating the performance of building materials subjected to different environmental scenarios. The presented results include the design, construction and validation of a small-scale wind tunnel (2 m × 1.8 m ca. vertical orientation). Key findings outline the adequacy of the tool in reproducing a stable, quality airflow with the following characteristics: achievable operational airflow speed ranges between 0.2 and 0.7 m/s, safe operational temperature is included between 10℃ and 35℃ and allowable operational relative humidity varies between 30 and 99%. Advantages and limitations for laboratory applications are outlined in the paper and future work is also suggested.
期刊介绍:
Experimental Techniques is a bimonthly interdisciplinary publication of the Society for Experimental Mechanics focusing on the development, application and tutorial of experimental mechanics techniques.
The purpose for Experimental Techniques is to promote pedagogical, technical and practical advancements in experimental mechanics while supporting the Society''s mission and commitment to interdisciplinary application, research and development, education, and active promotion of experimental methods to:
- Increase the knowledge of physical phenomena
- Further the understanding of the behavior of materials, structures, and systems
- Provide the necessary physical observations necessary to improve and assess new analytical and computational approaches.