Anna Hillenmayer, Laura D. Strehle, Christina Hilterhaus, Andreas Ohlmann, Christian M. Wertheimer, Armin Wolf
{"title":"Epiretinal Amniotic Membrane Influences the Cellular Behavior of Profibrotic Dedifferentiated Cells of Proliferative Vitreoretinopathy In Vitro","authors":"Anna Hillenmayer, Laura D. Strehle, Christina Hilterhaus, Andreas Ohlmann, Christian M. Wertheimer, Armin Wolf","doi":"10.1155/2023/8820844","DOIUrl":null,"url":null,"abstract":"Proliferative vitreoretinopathy (PVR) as a rare fibrotic ocular disease is the main reason for failure of retinal detachment surgery and a reduced prognosis following surgery. Amniotic membrane (AM) is a versatile surgical tool for tissue stabilization, antifibrotic properties, and regeneration. Initial clinical case studies now demonstrated intravitreal tolerance as well as good anatomical and functional results for degenerative retinal diseases. Due to its diverse wound healing properties, AM could have promoting, suppressive, or no effects on PVR. To illuminate the potential of epiretinal AM transplantation in complex retinal detachment cases, we investigated its influence on human primary PVR (hPVR) cells in vitro. In our cell culture study, hPVR cells were isolated from surgically removed PVR membranes. Following incubation with AM for 48 h, AM-incubated hPVR showed significantly reduced proliferation (BrdU-ELISA; <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"> <mi>p</mi> <mo><</mo> <mn>0.001</mn> </math> ), migration (Boyden chamber, scratch assay; <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"> <mi>p</mi> </math> = 0.003 and <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\"> <mi>p</mi> <mo><</mo> <mn>0.001</mn> </math> ), and cell adhesion ( <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\"> <mi>p</mi> </math> = 0.005). Collagen contraction was nearly unaffected ( <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\"> <mi>p</mi> </math> = 0.04), and toxicity (histone-complexed DNA ELISA, WST-1 assay, and life/dead staining) was excluded. Next, immunofluorescence showed a myofibroblastic phenotype with reduced expression of fibrosis markers in AM-incubated cells, which was confirmed by Western blot analysis. In the proteomics assay, AM significantly regulated proteins by a more than 2-fold increase in expression which were related to the cytoskeleton, lipid metabolism, cell-matrix contraction, and protein folding. In conclusion, this in vitro work suggests no induction of fibrosis and other key steps in the pathogenesis of PVR through AM but rather inhibiting properties of profibrotic cell behavior, making it a possible candidate for suppression of PVR. Further clinical studies are necessary to evaluate the therapeutic relevance.","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"30 1","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/8820844","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Proliferative vitreoretinopathy (PVR) as a rare fibrotic ocular disease is the main reason for failure of retinal detachment surgery and a reduced prognosis following surgery. Amniotic membrane (AM) is a versatile surgical tool for tissue stabilization, antifibrotic properties, and regeneration. Initial clinical case studies now demonstrated intravitreal tolerance as well as good anatomical and functional results for degenerative retinal diseases. Due to its diverse wound healing properties, AM could have promoting, suppressive, or no effects on PVR. To illuminate the potential of epiretinal AM transplantation in complex retinal detachment cases, we investigated its influence on human primary PVR (hPVR) cells in vitro. In our cell culture study, hPVR cells were isolated from surgically removed PVR membranes. Following incubation with AM for 48 h, AM-incubated hPVR showed significantly reduced proliferation (BrdU-ELISA; ), migration (Boyden chamber, scratch assay; = 0.003 and ), and cell adhesion ( = 0.005). Collagen contraction was nearly unaffected ( = 0.04), and toxicity (histone-complexed DNA ELISA, WST-1 assay, and life/dead staining) was excluded. Next, immunofluorescence showed a myofibroblastic phenotype with reduced expression of fibrosis markers in AM-incubated cells, which was confirmed by Western blot analysis. In the proteomics assay, AM significantly regulated proteins by a more than 2-fold increase in expression which were related to the cytoskeleton, lipid metabolism, cell-matrix contraction, and protein folding. In conclusion, this in vitro work suggests no induction of fibrosis and other key steps in the pathogenesis of PVR through AM but rather inhibiting properties of profibrotic cell behavior, making it a possible candidate for suppression of PVR. Further clinical studies are necessary to evaluate the therapeutic relevance.
期刊介绍:
Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs.
The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.