Semi-supervised Counting of Grape Berries in the Field Based on Density Mutual Exclusion

IF 7.6 1区 农林科学 Q1 AGRONOMY
Yanan Li, Yuling Tang, Yifei Liu, Dingrun Zheng
{"title":"Semi-supervised Counting of Grape Berries in the Field Based on Density Mutual Exclusion","authors":"Yanan Li, Yuling Tang, Yifei Liu, Dingrun Zheng","doi":"10.34133/plantphenomics.0115","DOIUrl":null,"url":null,"abstract":"Automated counting of grape berries has become one of the most important tasks in grape yield prediction. However, dense distribution of berries and the severe occlusion between berries bring great challenges to counting algorithm based on deep learning. The collection of data required for model training is also a tedious and expensive work. To address these issues and cost-effectively count grape berries, a semi-supervised counting of grape berries in the field based on density mutual exclusion (CDMENet) is proposed. The algorithm uses VGG16 as the backbone to extract image features. Auxiliary tasks based on density mutual exclusion are introduced. The tasks exploit the spatial distribution pattern of grape berries in density levels to make full use of unlabeled data. In addition, a density difference loss is designed. The feature representation is enhanced by amplifying the difference of features between different density levels. The experimental results on the field grape berry dataset show that CDMENet achieves less counting errors. Compared with the state of the arts, coefficient of determination (R2) is improved by 6.10%, and mean absolute error and root mean square error are reduced by 49.36% and 54.08%, respectively. The code is available at https://github.com/youth-tang/CDMENet-main.","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"44 2","pages":"0"},"PeriodicalIF":7.6000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0115","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Automated counting of grape berries has become one of the most important tasks in grape yield prediction. However, dense distribution of berries and the severe occlusion between berries bring great challenges to counting algorithm based on deep learning. The collection of data required for model training is also a tedious and expensive work. To address these issues and cost-effectively count grape berries, a semi-supervised counting of grape berries in the field based on density mutual exclusion (CDMENet) is proposed. The algorithm uses VGG16 as the backbone to extract image features. Auxiliary tasks based on density mutual exclusion are introduced. The tasks exploit the spatial distribution pattern of grape berries in density levels to make full use of unlabeled data. In addition, a density difference loss is designed. The feature representation is enhanced by amplifying the difference of features between different density levels. The experimental results on the field grape berry dataset show that CDMENet achieves less counting errors. Compared with the state of the arts, coefficient of determination (R2) is improved by 6.10%, and mean absolute error and root mean square error are reduced by 49.36% and 54.08%, respectively. The code is available at https://github.com/youth-tang/CDMENet-main.
基于密度互斥的葡萄果实田间半监督计数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Phenomics
Plant Phenomics Multiple-
CiteScore
8.60
自引率
9.20%
发文量
26
审稿时长
14 weeks
期刊介绍: Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals. The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics. The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信