Kinetics of Essential Oil Extraction of Kaffir Lime Peel Using Microwave Assisted Hydrodistillation

IF 0.5 Q4 ENGINEERING, BIOMEDICAL
Megawati Megawati, Bayu Triwibowo, Zuhriyan Ash Shiddieqy Bahlawan, Junaidah Jai, Pradipta Sadewa, Yuni Parastuti
{"title":"Kinetics of Essential Oil Extraction of Kaffir Lime Peel Using Microwave Assisted Hydrodistillation","authors":"Megawati Megawati, Bayu Triwibowo, Zuhriyan Ash Shiddieqy Bahlawan, Junaidah Jai, Pradipta Sadewa, Yuni Parastuti","doi":"10.4028/p-w3tmca","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to study the kinetics of kaffir lime peel essential oil extraction using microwave assisted hydrodistillation. Extraction was carried out at various powers and the ratios of material to solvent for 1 hour. Soxhlet extraction using n-hexane solvent was also carried out to determine the yield of essential oil. The extraction kinetics was investigated using a mass transfer-controlled approach and expressed by the 1st and 2nd order of reaction rate. The Soxhlet extraction results indicated that the yield of kaffir lime peel essential oil was 5.65% w/w. The higher the microwave power being applied (180, 300, 450, and 600 Watt), the higher the essential oil yielded (2.2; 2.8; 3; and 3.8% w/w), respectively, but at 800 Watt, the yield decreased (3.2% w/w). The smaller the ratio of material to solvent, which means more diluted, the lower the yield of oil were, namely from 4.56; 3.9; and 3.8% w/w, at ratios of material to solvent 1:3, 1:3.5, and 1:4 w/v. Different results were obtained at a ratio of 1:3 (4.56% w/w) which produced a yield greater than the ratio of 1:1.25 (2.88% w/w). Therefore, the optimum conditions for extracting kaffir lime peel essential oil were at 600 Watt and a ratio of material to solvent 1:3 w/w for 56 minutes with a yield of 4.58% and a density of 0.86 g/cm 3 . The kinetics of the 2nd order of homogeneous model better represented results of the experiments with extraction rate constants at 180, 300, 450, 600, and 800 Watt of 14.89; 14.95; 15.53; 21.32; and 19.85 L.g -1 .min -1 . While the extraction rate constants at the material to solvent ratio of 1:2.5; 1:3; 1:3.5; and 1:4 w/v of 17.38; 19.80; 22.09; and 32.31 L.g -1 .min -1 . The extraction capacity was also affected by the power and the ratio of material to solvent, the extraction capacity were 0.0095; 0.0100; 0.0104; 0.0125; and 0.0106 g.L -1 , at 180, 300, 450, 600, and 800 Watt respectively, and 0.0094; 0.0134; 0.0134; and 0.0118 g.L -1 , at material to solvent ratio of 1:2.5; 1:3; 1:3,5; and 1:4 w/v respectively.","PeriodicalId":15161,"journal":{"name":"Journal of Biomimetics, Biomaterials and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-w3tmca","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this study is to study the kinetics of kaffir lime peel essential oil extraction using microwave assisted hydrodistillation. Extraction was carried out at various powers and the ratios of material to solvent for 1 hour. Soxhlet extraction using n-hexane solvent was also carried out to determine the yield of essential oil. The extraction kinetics was investigated using a mass transfer-controlled approach and expressed by the 1st and 2nd order of reaction rate. The Soxhlet extraction results indicated that the yield of kaffir lime peel essential oil was 5.65% w/w. The higher the microwave power being applied (180, 300, 450, and 600 Watt), the higher the essential oil yielded (2.2; 2.8; 3; and 3.8% w/w), respectively, but at 800 Watt, the yield decreased (3.2% w/w). The smaller the ratio of material to solvent, which means more diluted, the lower the yield of oil were, namely from 4.56; 3.9; and 3.8% w/w, at ratios of material to solvent 1:3, 1:3.5, and 1:4 w/v. Different results were obtained at a ratio of 1:3 (4.56% w/w) which produced a yield greater than the ratio of 1:1.25 (2.88% w/w). Therefore, the optimum conditions for extracting kaffir lime peel essential oil were at 600 Watt and a ratio of material to solvent 1:3 w/w for 56 minutes with a yield of 4.58% and a density of 0.86 g/cm 3 . The kinetics of the 2nd order of homogeneous model better represented results of the experiments with extraction rate constants at 180, 300, 450, 600, and 800 Watt of 14.89; 14.95; 15.53; 21.32; and 19.85 L.g -1 .min -1 . While the extraction rate constants at the material to solvent ratio of 1:2.5; 1:3; 1:3.5; and 1:4 w/v of 17.38; 19.80; 22.09; and 32.31 L.g -1 .min -1 . The extraction capacity was also affected by the power and the ratio of material to solvent, the extraction capacity were 0.0095; 0.0100; 0.0104; 0.0125; and 0.0106 g.L -1 , at 180, 300, 450, 600, and 800 Watt respectively, and 0.0094; 0.0134; 0.0134; and 0.0118 g.L -1 , at material to solvent ratio of 1:2.5; 1:3; 1:3,5; and 1:4 w/v respectively.
微波辅助蒸馏法提取青柠皮精油的动力学研究
研究了微波辅助加氢蒸馏法提取青柠皮精油的动力学过程。在不同的功率和物质与溶剂的比例下提取1小时。采用正己烷溶剂索氏萃取法测定精油得率。采用传质控制方法研究了萃取动力学,用一级和二级反应速率表示萃取动力学。索氏提取结果表明,青柠皮精油得率为5.65% w/w。微波功率越高(180w、300w、450w、600w),精油产量越高(2.2;2.8;3;和3.8% w/w),但在800 w时,产率下降(3.2% w/w)。料溶剂比越小,即越稀释,油得率越低,即从4.56;3.9;和3.8% w/w,材料与溶剂的比例为1:3,1:3.5和1:4 w/v。在比例为1:3 (4.56% w/w)时,产率高于比例为1:25 (2.88% w/w)时的产率。因此,提取青柠皮精油的最佳工艺条件为:功率为600瓦,料液比为1:3 w/w,提取时间为56分钟,得率为4.58%,提取密度为0.86 g/ cm3。在180、300、450、600和800瓦萃取速率常数为14.89时,二阶均相模型的动力学较好地反映了实验结果;14.95;15.53;21.32;19.85 l g -1 .min -1。料液比为1:25 .5时的萃取速率常数;1:3;1:3.5;1:4 w/v = 17.38;19.80;22.09;32.31 l g -1 .min -1。萃取量也受萃取功率和料液比的影响,萃取量为0.0095;0.0100;0.0104;0.0125;0.0106 g。L -1分别为180、300、450、600和800瓦,0.0094;0.0134;0.0134;0.0118 g。L -1,料溶剂比1:25;1:3;1:3, 5;和1:4 w/v。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
73
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信