{"title":"A tunable balanced phase shifter with wide operating bandwidth","authors":"Wei Zhang, Binghe Wang, Bin Wang, Jin Shi, Kai Xu","doi":"10.1017/s1759078723001228","DOIUrl":null,"url":null,"abstract":"Abstract A wideband tunable balanced phase shifter is achieved by utilizing varactor-loaded coupled lines (VLCLs)-embedded multistage branch-line structure. The tunable phase shift with low in-band phase deviation is attributed to the regulation in phase shift of the VLCLs and the horizontal microstrip lines in series. The wideband differential-mode (DM) impedance matching and common-mode (CM) suppression are due to multiple DM transmission poles and CM transmission zeros, which are brought about by the cascade of VLCLs and a microstrip line with short-circuited stubs in the DM-equivalent circuit and open-circuited stubs in the CM-equivalent circuit, respectively. Compared with the state-of-the-art tunable balanced phase shifters, the proposed design not only has the advantages of wide operating bandwidth (BW) with low in-band phase deviation but also has low insertion loss and easily fabricated structure. Theoretical analysis and design procedure were conducted, resulting in a prototype covering the frequency of 1.8 GHz. This prototype offers a tunable phase shift capability ranging from 0° to 90°. The prototype exhibits an operating BW of 45%, with a maximum phase deviation of ±6°. It also achieves a 10 dB DM return loss and CM suppression, while maintaining a maximum insertion loss of 2.5 dB.","PeriodicalId":49052,"journal":{"name":"International Journal of Microwave and Wireless Technologies","volume":"34 3","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave and Wireless Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1759078723001228","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract A wideband tunable balanced phase shifter is achieved by utilizing varactor-loaded coupled lines (VLCLs)-embedded multistage branch-line structure. The tunable phase shift with low in-band phase deviation is attributed to the regulation in phase shift of the VLCLs and the horizontal microstrip lines in series. The wideband differential-mode (DM) impedance matching and common-mode (CM) suppression are due to multiple DM transmission poles and CM transmission zeros, which are brought about by the cascade of VLCLs and a microstrip line with short-circuited stubs in the DM-equivalent circuit and open-circuited stubs in the CM-equivalent circuit, respectively. Compared with the state-of-the-art tunable balanced phase shifters, the proposed design not only has the advantages of wide operating bandwidth (BW) with low in-band phase deviation but also has low insertion loss and easily fabricated structure. Theoretical analysis and design procedure were conducted, resulting in a prototype covering the frequency of 1.8 GHz. This prototype offers a tunable phase shift capability ranging from 0° to 90°. The prototype exhibits an operating BW of 45%, with a maximum phase deviation of ±6°. It also achieves a 10 dB DM return loss and CM suppression, while maintaining a maximum insertion loss of 2.5 dB.
期刊介绍:
The prime objective of the International Journal of Microwave and Wireless Technologies is to enhance the communication between microwave engineers throughout the world. It is therefore interdisciplinary and application oriented, providing a platform for the microwave industry. Coverage includes: applied electromagnetic field theory (antennas, transmission lines and waveguides), components (passive structures and semiconductor device technologies), analogue and mixed-signal circuits, systems, optical-microwave interactions, electromagnetic compatibility, industrial applications, biological effects and medical applications.