Pham Thi Viet Huong, Le Duc Thinh, Phung Van Kien, Tran Anh Vu
{"title":"Multiple Channels Model Based on Mel Spectrogram for Classifying Abnormalities in Lung Sound","authors":"Pham Thi Viet Huong, Le Duc Thinh, Phung Van Kien, Tran Anh Vu","doi":"10.4028/p-21pucq","DOIUrl":null,"url":null,"abstract":"Lung sound analysis plays an important role in the assessment and diagnosis of respiratory conditions and diseases. It can provide valuable information about the functioning of the respiratory system, including the airways, lungs, and associated structures. By analyzing the characteristics of lung sounds, healthcare professionals can gain insights into the presence of abnormalities, such as airway obstructions, lung diseases, and respiratory infections. In this paper, a multiple channel model for processing and classifying abnormalities in lung sound is proposed, which utilize the characteristics of Mel spectrogram and the Empirical Mode Decomposition (EMD). Unlike previous research which directly convert the lung sound into scalogram or spectrogram, the pre-processing of the original audio signal is considered and focused in this paper. This pre-processing step includes denoising, resampling, padding and augmentation, which incredibly increase the quality of the input signal. Finally, the multiple channel is put into the VGG16 deep learning model to classify the abnormalities in lung sound, including wheezes, crackles, and both. The model is trained and tested on the benchmark ICBHI dataset. The proposed model has shown better performance when compared with the state-of-the-art researches.","PeriodicalId":15161,"journal":{"name":"Journal of Biomimetics, Biomaterials and Biomedical Engineering","volume":"40 16","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-21pucq","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lung sound analysis plays an important role in the assessment and diagnosis of respiratory conditions and diseases. It can provide valuable information about the functioning of the respiratory system, including the airways, lungs, and associated structures. By analyzing the characteristics of lung sounds, healthcare professionals can gain insights into the presence of abnormalities, such as airway obstructions, lung diseases, and respiratory infections. In this paper, a multiple channel model for processing and classifying abnormalities in lung sound is proposed, which utilize the characteristics of Mel spectrogram and the Empirical Mode Decomposition (EMD). Unlike previous research which directly convert the lung sound into scalogram or spectrogram, the pre-processing of the original audio signal is considered and focused in this paper. This pre-processing step includes denoising, resampling, padding and augmentation, which incredibly increase the quality of the input signal. Finally, the multiple channel is put into the VGG16 deep learning model to classify the abnormalities in lung sound, including wheezes, crackles, and both. The model is trained and tested on the benchmark ICBHI dataset. The proposed model has shown better performance when compared with the state-of-the-art researches.