Ilya Usoskin, Fusa Miyake, Melanie Baroni, Nicolas Brehm, Silvia Dalla, Hisashi Hayakawa, Hugh Hudson, A. J. Timothy Jull, Delores Knipp, Sergey Koldobskiy, Hiroyuki Maehara, Florian Mekhaldi, Yuta Notsu, Stepan Poluianov, Eugene Rozanov, Alexander Shapiro, Tobias Spiegl, Timofei Sukhodolov, Joonas Uusitalo, Lukas Wacker
{"title":"Extreme Solar Events: Setting up a Paradigm","authors":"Ilya Usoskin, Fusa Miyake, Melanie Baroni, Nicolas Brehm, Silvia Dalla, Hisashi Hayakawa, Hugh Hudson, A. J. Timothy Jull, Delores Knipp, Sergey Koldobskiy, Hiroyuki Maehara, Florian Mekhaldi, Yuta Notsu, Stepan Poluianov, Eugene Rozanov, Alexander Shapiro, Tobias Spiegl, Timofei Sukhodolov, Joonas Uusitalo, Lukas Wacker","doi":"10.1007/s11214-023-01018-1","DOIUrl":null,"url":null,"abstract":"Abstract The Sun is magnetically active and often produces eruptive events on different energetic and temporal scales. Until recently, the upper limit of such events was unknown and believed to be roughly represented by direct instrumental observations. However, two types of extreme events were discovered recently: extreme solar energetic particle events on the multi-millennial time scale and super-flares on sun-like stars. Both discoveries imply that the Sun might rarely produce events, called extreme solar events (ESE), whose energy could be orders of magnitude greater than anything we have observed during recent decades. During the years following these discoveries, great progress has been achieved in collecting observational evidence, uncovering new events, making statistical analyses, and developing theoretical modelling. The ESE paradigm lives and is being developed. On the other hand, many outstanding questions still remain open and new ones emerge. Here we present an overview of the current state of the art and the forming paradigm of ESE from different points of view: solar physics, stellar–solar projections, cosmogenic-isotope data, modelling, historical data, as well as terrestrial, technological and societal effects of ESEs. Special focus is paid to open questions and further developments. This review is based on the joint work of the International Space Science Institute (ISSI) team #510 (2020–2022).","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"32 1","pages":"0"},"PeriodicalIF":9.1000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Science Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11214-023-01018-1","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The Sun is magnetically active and often produces eruptive events on different energetic and temporal scales. Until recently, the upper limit of such events was unknown and believed to be roughly represented by direct instrumental observations. However, two types of extreme events were discovered recently: extreme solar energetic particle events on the multi-millennial time scale and super-flares on sun-like stars. Both discoveries imply that the Sun might rarely produce events, called extreme solar events (ESE), whose energy could be orders of magnitude greater than anything we have observed during recent decades. During the years following these discoveries, great progress has been achieved in collecting observational evidence, uncovering new events, making statistical analyses, and developing theoretical modelling. The ESE paradigm lives and is being developed. On the other hand, many outstanding questions still remain open and new ones emerge. Here we present an overview of the current state of the art and the forming paradigm of ESE from different points of view: solar physics, stellar–solar projections, cosmogenic-isotope data, modelling, historical data, as well as terrestrial, technological and societal effects of ESEs. Special focus is paid to open questions and further developments. This review is based on the joint work of the International Space Science Institute (ISSI) team #510 (2020–2022).
期刊介绍:
Space Science Reviews (SSRv) stands as an international journal dedicated to scientific space research, offering a contemporary synthesis across various branches of space exploration. Emphasizing scientific outcomes and instruments, SSRv spans astrophysics, physics of planetary systems, solar physics, and the physics of magnetospheres & interplanetary matter.
Beyond Topical Collections and invited Review Articles, Space Science Reviews welcomes unsolicited Review Articles and Special Communications. The latter encompass papers related to a prior topical volume/collection, report-type papers, or timely contributions addressing a robust combination of space science and technology. These papers succinctly summarize both the science and technology aspects of instruments or missions in a single publication.