Three New Refined Arnold Families

IF 0.7 4区 数学 Q2 MATHEMATICS
Sen-Peng Eu, Louis Kao
{"title":"Three New Refined Arnold Families","authors":"Sen-Peng Eu, Louis Kao","doi":"10.37236/11988","DOIUrl":null,"url":null,"abstract":"The Springer numbers, introduced by Arnold, are generalizations of Euler numbers in the sense of Coxeter groups. They appear as the row sums of a double triangular array $(v_{n,k})$ of integers, $1\\leq|k|\\leq n$, defined recursively by a boustrophedon algorithm. We say a sequence of combinatorial objects $(X_{n,k})$ is an Arnold family if $X_{n,k}$ is counted by $v_{n,k}$. A polynomial refinement $V_{n,k}(t)$ of $v_{n,k}$, together with the combinatorial interpretations in several combinatorial structures was introduced by Eu and Fu recently. In this paper, we provide three new Arnold families of combinatorial objects, namely the cycle-up-down permutations, the valley signed permutations and Knuth's flip equivalences on permutations. We shall find corresponding statistics to realize the refined polynomial arrays.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"53 19","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37236/11988","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Springer numbers, introduced by Arnold, are generalizations of Euler numbers in the sense of Coxeter groups. They appear as the row sums of a double triangular array $(v_{n,k})$ of integers, $1\leq|k|\leq n$, defined recursively by a boustrophedon algorithm. We say a sequence of combinatorial objects $(X_{n,k})$ is an Arnold family if $X_{n,k}$ is counted by $v_{n,k}$. A polynomial refinement $V_{n,k}(t)$ of $v_{n,k}$, together with the combinatorial interpretations in several combinatorial structures was introduced by Eu and Fu recently. In this paper, we provide three new Arnold families of combinatorial objects, namely the cycle-up-down permutations, the valley signed permutations and Knuth's flip equivalences on permutations. We shall find corresponding statistics to realize the refined polynomial arrays.
三个新的精致阿诺德家族
由Arnold引入的Springer数是欧拉数在Coxeter群意义上的推广。它们显示为整数的双三角形数组$(v_{n,k})$的行和,$1\leq|k|\leq n$,由一个递归的boustrophedon算法定义。我们说一个组合对象序列$(X_{n,k})$是Arnold族,如果$X_{n,k}$被$v_{n,k}$计数。最近,Eu和Fu介绍了$v_{n,k}$的多项式细化$V_{n,k}(t)$,以及几种组合结构中的组合解释。本文给出了组合对象的三个新的Arnold族,即循环上下置换、谷符号置换和置换上的Knuth翻转等价。我们需要找到相应的统计量来实现改进的多项式数组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信