GPS data on tourists: a spatial analysis on road networks

IF 1.4 4区 数学 Q2 STATISTICS & PROBABILITY
Nicoletta D’Angelo, Antonino Abbruzzo, Mauro Ferrante, Giada Adelfio, Marcello Chiodi
{"title":"GPS data on tourists: a spatial analysis on road networks","authors":"Nicoletta D’Angelo,&nbsp;Antonino Abbruzzo,&nbsp;Mauro Ferrante,&nbsp;Giada Adelfio,&nbsp;Marcello Chiodi","doi":"10.1007/s10182-023-00484-w","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a spatial point process model on a linear network to analyse cruise passengers’ stop activities. It identifies and models tourists’ stop intensity at the destination as a function of their main determinants. For this purpose, we consider data collected on cruise passengers through the integration of traditional questionnaire-based survey methods and GPS tracking data in two cities, namely Palermo (Italy) and Dubrovnik (Croatia). Firstly, the density-based spatial clustering of applications with noise algorithm is applied to identify stop locations from GPS tracking data. The influence of individual-related variables and itinerary-related characteristics is considered within a framework of a Gibbs point process model. The proposed model describes spatial stop intensity at the destination, accounting for the geometry of the underlying road network, individual-related variables, contextual-level information, and the spatial interaction amongst stop points. The analysis succeeds in quantifying the influence of both individual-related variables and trip-related characteristics on stop intensity. An interaction parameter allows for measuring the degree of dependence amongst cruise passengers in stop location decisions.</p></div>","PeriodicalId":55446,"journal":{"name":"Asta-Advances in Statistical Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10182-023-00484-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asta-Advances in Statistical Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10182-023-00484-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a spatial point process model on a linear network to analyse cruise passengers’ stop activities. It identifies and models tourists’ stop intensity at the destination as a function of their main determinants. For this purpose, we consider data collected on cruise passengers through the integration of traditional questionnaire-based survey methods and GPS tracking data in two cities, namely Palermo (Italy) and Dubrovnik (Croatia). Firstly, the density-based spatial clustering of applications with noise algorithm is applied to identify stop locations from GPS tracking data. The influence of individual-related variables and itinerary-related characteristics is considered within a framework of a Gibbs point process model. The proposed model describes spatial stop intensity at the destination, accounting for the geometry of the underlying road network, individual-related variables, contextual-level information, and the spatial interaction amongst stop points. The analysis succeeds in quantifying the influence of both individual-related variables and trip-related characteristics on stop intensity. An interaction parameter allows for measuring the degree of dependence amongst cruise passengers in stop location decisions.

Abstract Image

游客 GPS 数据:道路网络的空间分析
本文提出了一个线性网络上的空间点过程模型来分析邮轮乘客的停留活动。该模型将游客在目的地的停留强度作为其主要决定因素的函数进行识别和建模。为此,我们在意大利巴勒莫和克罗地亚杜布罗夫尼克两座城市,通过整合传统的问卷调查方法和 GPS 跟踪数据,收集了邮轮乘客的数据。首先,我们采用基于密度的空间聚类算法来识别 GPS 跟踪数据中的停靠地点。在吉布斯点过程模型的框架内,考虑了与个人相关的变量和与行程相关的特征的影响。所提出的模型描述了目的地的空间停靠强度,考虑了基础道路网络的几何形状、与个人相关的变量、上下文信息以及停靠点之间的空间交互作用。分析成功地量化了个人相关变量和行程相关特征对停靠强度的影响。通过互动参数,可以衡量邮轮乘客在决定停靠站点时的依赖程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asta-Advances in Statistical Analysis
Asta-Advances in Statistical Analysis 数学-统计学与概率论
CiteScore
2.20
自引率
14.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: AStA - Advances in Statistical Analysis, a journal of the German Statistical Society, is published quarterly and presents original contributions on statistical methods and applications and review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信