Tufail Shahzad, Peng Wang, Peter van Lith, Jacques Hoffmans
{"title":"Utilizing Artificial Intelligence and Knowledge-Based Engineering Techniques in Shipbuilding: Practical Insights and Viability","authors":"Tufail Shahzad, Peng Wang, Peter van Lith, Jacques Hoffmans","doi":"10.5957/jspd.03230002","DOIUrl":null,"url":null,"abstract":"_ This paper delves into the technical aspects and viability of integrating artificial intelligence (AI) and knowledge-based engineering (KBE) tools in practical design. The goal is to digitally embed the hands-on expertise and technical boundaries set by seasoned professionals during intricate engineering and preparatory phases. We showcase how AI/KBE tools might emulate human cognitive processes to make well-informed choices. The article also probes the prospective economic and modernization repercussions of this innovation. Our findings suggest that such an integration is feasible and can amplify the decision-making efficacy and advance the sophistication of CAD/CAM systems in the shipbuilding realm. Furthermore, this investigation underscores the promising future of AI/KBE tools in ship design and advocates for continued exploration and innovation in this sector to fully harness its advantages. Introduction Shipbuilding has long been intertwined with CAD/CAM technologies. As technology evolves, so does the landscape of ship design and manufacturing (Ross, 1950). Traditionally, ship design leaned heavily on seasoned engineers and designers, whose insights were cultivated over years of experience. However, with the rising demand for ships and an aging workforce, there’s a pressing need for enhanced design methodologies. Enter the era of artificial intelligence (AI) and knowledge-based engineering (KBE), which promise to revolutionize ship design by integrating practical knowledge and technical constraints. In today’s shipbuilding scenario, younger engineers often handle detailed engineering stages, a shift from when experienced professionals dominated the shop floor (Moyst and Das, 2005). Our research aims to assess the feasibility of AI KBE systems in enhancing the ship design process during these stages, by virtualizing the knowledge of experienced workers.","PeriodicalId":48791,"journal":{"name":"Journal of Ship Production and Design","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ship Production and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5957/jspd.03230002","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
_ This paper delves into the technical aspects and viability of integrating artificial intelligence (AI) and knowledge-based engineering (KBE) tools in practical design. The goal is to digitally embed the hands-on expertise and technical boundaries set by seasoned professionals during intricate engineering and preparatory phases. We showcase how AI/KBE tools might emulate human cognitive processes to make well-informed choices. The article also probes the prospective economic and modernization repercussions of this innovation. Our findings suggest that such an integration is feasible and can amplify the decision-making efficacy and advance the sophistication of CAD/CAM systems in the shipbuilding realm. Furthermore, this investigation underscores the promising future of AI/KBE tools in ship design and advocates for continued exploration and innovation in this sector to fully harness its advantages. Introduction Shipbuilding has long been intertwined with CAD/CAM technologies. As technology evolves, so does the landscape of ship design and manufacturing (Ross, 1950). Traditionally, ship design leaned heavily on seasoned engineers and designers, whose insights were cultivated over years of experience. However, with the rising demand for ships and an aging workforce, there’s a pressing need for enhanced design methodologies. Enter the era of artificial intelligence (AI) and knowledge-based engineering (KBE), which promise to revolutionize ship design by integrating practical knowledge and technical constraints. In today’s shipbuilding scenario, younger engineers often handle detailed engineering stages, a shift from when experienced professionals dominated the shop floor (Moyst and Das, 2005). Our research aims to assess the feasibility of AI KBE systems in enhancing the ship design process during these stages, by virtualizing the knowledge of experienced workers.
期刊介绍:
Original and timely technical papers addressing problems of shipyard techniques and production of merchant and naval ships appear in this quarterly publication. Since its inception, the Journal of Ship Production and Design (formerly the Journal of Ship Production) has been a forum for peer-reviewed, professionally edited papers from academic and industry sources. As such it has influenced the worldwide development of ship production engineering as a fully qualified professional discipline. The expanded scope seeks papers in additional areas, specifically ship design, including design for production, plus other marine technology topics, such as ship operations, shipping economics, and safety. Each issue contains a well-rounded selection of technical papers relevant to marine professionals.