{"title":"Pharmaceuticals and Personal Care Products as Emerging Environmental Contaminants: Prevalence, Toxicity, and Remedial Approaches","authors":"Aritra Chakraborty, Satadal Adhikary, Suchandra Bhattacharya, Sohini Dutta, Sovona Chatterjee, Diyasha Banerjee, Abhratanu Ganguly and Prem Rajak*, ","doi":"10.1021/acs.chas.3c00071","DOIUrl":null,"url":null,"abstract":"<p >Pharmaceuticals and Personal Care Products (PPCPs) are synthetic compounds widely used as consumer items such as cosmetics and therapeutic drugs across the globe. The inappropriate disposal of PPCPs in the environment has raised serious concerns regarding their potential adverse impacts on human and animal health. Hence, the present study aims to delve into the environmental contamination of numerous PPCPs and their detrimental impacts on biota and climate change. Mining of data published in the relevant literature has revealed that active ingredients of PPCPs and their metabolites generally invade the ecosystem via multiple sources. Varying concentrations of these contaminants are reported in surface water, groundwater, and wastewater treatment plants. The majority of PPCPs pose acute and chronic toxicity to living organisms. They adversely affect the structure and function of the algal community along with the feeding, mating, metabolic activities, and reproductive behavior of invertebrates, fishes, and higher vertebrates, including humans. The occurrence of antibiotic resistance in bacterial populations as a response to PPCP contamination is another health concern. In addition, targeting mitochondrial respiratory proteins and cytochrome enzymes by PPCPs might contribute to the onset of multiple physiological ailments. Studies have deciphered the connection between PPCP contamination and methanogenesis, which could potentially impact climate change. Several degradation methods have been used for the removal of PPCPs. However, none of them completely remove the PPCPs from samples. Therefore, developing more advanced eco-friendly approaches is warranted for better treatment of PPCPs in water media. In addition, further investigations are required for the risk assessment of several PPCPs that have not yet been investigated.</p>","PeriodicalId":73648,"journal":{"name":"Journal of chemical health & safety","volume":"30 6","pages":"362–388"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chemical health & safety","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chas.3c00071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Pharmaceuticals and Personal Care Products (PPCPs) are synthetic compounds widely used as consumer items such as cosmetics and therapeutic drugs across the globe. The inappropriate disposal of PPCPs in the environment has raised serious concerns regarding their potential adverse impacts on human and animal health. Hence, the present study aims to delve into the environmental contamination of numerous PPCPs and their detrimental impacts on biota and climate change. Mining of data published in the relevant literature has revealed that active ingredients of PPCPs and their metabolites generally invade the ecosystem via multiple sources. Varying concentrations of these contaminants are reported in surface water, groundwater, and wastewater treatment plants. The majority of PPCPs pose acute and chronic toxicity to living organisms. They adversely affect the structure and function of the algal community along with the feeding, mating, metabolic activities, and reproductive behavior of invertebrates, fishes, and higher vertebrates, including humans. The occurrence of antibiotic resistance in bacterial populations as a response to PPCP contamination is another health concern. In addition, targeting mitochondrial respiratory proteins and cytochrome enzymes by PPCPs might contribute to the onset of multiple physiological ailments. Studies have deciphered the connection between PPCP contamination and methanogenesis, which could potentially impact climate change. Several degradation methods have been used for the removal of PPCPs. However, none of them completely remove the PPCPs from samples. Therefore, developing more advanced eco-friendly approaches is warranted for better treatment of PPCPs in water media. In addition, further investigations are required for the risk assessment of several PPCPs that have not yet been investigated.