{"title":"Holomorphic Hörmander-type functional calculus on sectors and strips","authors":"Markus Haase, Florian Pannasch","doi":"10.1090/btran/164","DOIUrl":null,"url":null,"abstract":"In this paper, the abstract multiplier theorems for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0\"> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding=\"application/x-tex\">0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-sectorial and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0\"> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding=\"application/x-tex\">0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-strip type operators by Kriegler and Weis [Math. Z. 289 (2018), pp. 405–444] are refined and generalized to arbitrary sectorial and strip-type operators. To this end, holomorphic Hörmander-type functions on sectors and strips are introduced, with even a finer scale of smoothness than the classical polynomial scale. Moreover, we establish alternative descriptions of these spaces involving Schwartz and “holomorphic Schwartz” functions. Finally, the abstract results are combined with a result by Carbonaro and Dragičević [Duke Math. J. 166 (2017), pp. 937–974] to obtain an improvement—with respect to the smoothness condition—of the known Hörmander-type multiplier theorem for general symmetric contraction semigroups.","PeriodicalId":23209,"journal":{"name":"Transactions of the American Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/164","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the abstract multiplier theorems for 00-sectorial and 00-strip type operators by Kriegler and Weis [Math. Z. 289 (2018), pp. 405–444] are refined and generalized to arbitrary sectorial and strip-type operators. To this end, holomorphic Hörmander-type functions on sectors and strips are introduced, with even a finer scale of smoothness than the classical polynomial scale. Moreover, we establish alternative descriptions of these spaces involving Schwartz and “holomorphic Schwartz” functions. Finally, the abstract results are combined with a result by Carbonaro and Dragičević [Duke Math. J. 166 (2017), pp. 937–974] to obtain an improvement—with respect to the smoothness condition—of the known Hörmander-type multiplier theorem for general symmetric contraction semigroups.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles in all areas of pure and applied mathematics. To be published in the Transactions, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Papers of less than 15 printed pages that meet the above criteria should be submitted to the Proceedings of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.