Thomas Pucher, Pablo Bastante, Federico Parenti, Yong Xie, Elisabetta Dimaggio, Gianluca Fiori, Andres Castellanos-Gomez
{"title":"Biodegradable albumen dielectrics for high-mobility MoS2 phototransistors","authors":"Thomas Pucher, Pablo Bastante, Federico Parenti, Yong Xie, Elisabetta Dimaggio, Gianluca Fiori, Andres Castellanos-Gomez","doi":"10.1038/s41699-023-00436-7","DOIUrl":null,"url":null,"abstract":"This work demonstrates the fabrication and characterization of single-layer MoS2 field-effect transistors using biodegradable albumen (chicken eggwhite) as gate dielectric. By introducing albumen as an insulator for MoS2 transistors high carrier mobilities (up to ~90 cm2 V−1 s−1) are observed, which is remarkably superior to that obtained with commonly used SiO2 dielectric which we attribute to ionic gating due to the formation of an electric double layer in the albumen MoS2 interface. In addition, the investigated devices are characterized upon illumination, observing responsivities of 4.5 AW−1 (operated in photogating regime) and rise times as low as 52 ms (operated in photoconductivity regime). The presented study reveals the combination of albumen with van der Waals materials for prospective biodegradable and biocompatible optoelectronic device applications. Furthermore, the demonstrated universal fabrication process can be easily adopted to fabricate albumen-based devices with any other van der Waals material.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-6"},"PeriodicalIF":9.1000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-023-00436-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj 2D Materials and Applications","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41699-023-00436-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work demonstrates the fabrication and characterization of single-layer MoS2 field-effect transistors using biodegradable albumen (chicken eggwhite) as gate dielectric. By introducing albumen as an insulator for MoS2 transistors high carrier mobilities (up to ~90 cm2 V−1 s−1) are observed, which is remarkably superior to that obtained with commonly used SiO2 dielectric which we attribute to ionic gating due to the formation of an electric double layer in the albumen MoS2 interface. In addition, the investigated devices are characterized upon illumination, observing responsivities of 4.5 AW−1 (operated in photogating regime) and rise times as low as 52 ms (operated in photoconductivity regime). The presented study reveals the combination of albumen with van der Waals materials for prospective biodegradable and biocompatible optoelectronic device applications. Furthermore, the demonstrated universal fabrication process can be easily adopted to fabricate albumen-based devices with any other van der Waals material.
期刊介绍:
npj 2D Materials and Applications publishes papers on the fundamental behavior, synthesis, properties and applications of existing and emerging 2D materials. By selecting papers with the potential for impact, the journal aims to facilitate the transfer of the research of 2D materials into wide-ranging applications.