Jeremy Phillips, Shannon Williams, Anthony Lee, Susanna Jenkins
{"title":"Quantifying uncertainty in probabilistic volcanic ash hazard forecasts, with an application to weather pattern based wind field sampling","authors":"Jeremy Phillips, Shannon Williams, Anthony Lee, Susanna Jenkins","doi":"10.1007/s00445-023-01664-x","DOIUrl":null,"url":null,"abstract":"Abstract Probabilistic forecasting of volcanic ash dispersion involves simulating an ensemble of realistic event scenarios to estimate the probability of a particular hazard threshold being exceeded. Although the number of samples that make up the ensemble, how they are chosen, and the desired threshold all set the uncertainty of (or confidence in) the estimated exceedance probability, current practice does not quantify and communicate the uncertainty in ensemble predictions. In this study, we use standard statistical methods to estimate the variance in probabilistic ensembles and use this measure of uncertainty to assess different sampling strategies for the wind field, using the example of volcanic ash transport from a representative explosive eruption in Iceland. For stochastic (random) sampling of the wind field, we show how the variance is reduced with increasing ensemble size and how the variance depends on the desired hazard threshold and the proximity of a target site to the volcanic source. We demonstrate how estimated variances can be used to compare different ensemble designs, by comparing stochastic forecasts with forecasts obtained from a stratified sampling approach using a set of 29 Northern European weather regimes, known as Grosswetterlagen (GWL). Sampling wind fields from within the GWL regimes reduces the number of samples needed to achieve the same variance as compared to conventional stochastic sampling. Our results show that uncertainty in volcanic ash dispersion forecasts can be straightforwardly calculated and communicated, and highlight the need for the volcanic ash forecasting community and operational end-users to jointly choose acceptable levels of variance for ash forecasts in the future.","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"2020 23","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Volcanology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00445-023-01664-x","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Probabilistic forecasting of volcanic ash dispersion involves simulating an ensemble of realistic event scenarios to estimate the probability of a particular hazard threshold being exceeded. Although the number of samples that make up the ensemble, how they are chosen, and the desired threshold all set the uncertainty of (or confidence in) the estimated exceedance probability, current practice does not quantify and communicate the uncertainty in ensemble predictions. In this study, we use standard statistical methods to estimate the variance in probabilistic ensembles and use this measure of uncertainty to assess different sampling strategies for the wind field, using the example of volcanic ash transport from a representative explosive eruption in Iceland. For stochastic (random) sampling of the wind field, we show how the variance is reduced with increasing ensemble size and how the variance depends on the desired hazard threshold and the proximity of a target site to the volcanic source. We demonstrate how estimated variances can be used to compare different ensemble designs, by comparing stochastic forecasts with forecasts obtained from a stratified sampling approach using a set of 29 Northern European weather regimes, known as Grosswetterlagen (GWL). Sampling wind fields from within the GWL regimes reduces the number of samples needed to achieve the same variance as compared to conventional stochastic sampling. Our results show that uncertainty in volcanic ash dispersion forecasts can be straightforwardly calculated and communicated, and highlight the need for the volcanic ash forecasting community and operational end-users to jointly choose acceptable levels of variance for ash forecasts in the future.
期刊介绍:
Bulletin of Volcanology was founded in 1922, as Bulletin Volcanologique, and is the official journal of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI). The Bulletin of Volcanology publishes papers on volcanoes, their products, their eruptive behavior, and their hazards. Papers aimed at understanding the deeper structure of volcanoes, and the evolution of magmatic systems using geochemical, petrological, and geophysical techniques are also published. Material is published in four sections: Review Articles; Research Articles; Short Scientific Communications; and a Forum that provides for discussion of controversial issues and for comment and reply on previously published Articles and Communications.