The Effect of Differential Pressure and Permanent Pressure Loss on Multi-Hole Orifice Plate

IF 1 4区 工程技术 Q4 INSTRUMENTS & INSTRUMENTATION
TM Hariguru, S Srinivasan
{"title":"The Effect of Differential Pressure and Permanent Pressure Loss on Multi-Hole Orifice Plate","authors":"TM Hariguru, S Srinivasan","doi":"10.2478/msr-2023-0029","DOIUrl":null,"url":null,"abstract":"Abstract The widely used orifice plate falls under restricted type flow devices, has the highest differential pressure and permanent pressure drop in the ensemble. The objective is to curtail the permanent pressure drop and maintain the differential pressure across the orifice plate, and thereby, the power required to pump the liquid is retrenched. So, three-hole, four-hole and five-hole orifice plates with an identical area to that of the single-hole orifice plate were designed and experiments were carried out. It is observed that the experimental results almost matched with the simulation data. In comparing the performance, the four-hole orifice plate yielded a higher differential pressure and higher-pressure loss. In contrast, the five-hole orifice yielded lower differential pressure and higher-pressure loss compared to the single-hole orifice plate. In case of three-hole orifice plate it performed better than the single-hole orifice with reduced pressure loss and higher differential pressure. It was also found that the power consumed by the pump for pumping was lower for three-hole, four-hole and five-hole orifice plates compared to the single-hole orifice plate. Thus, the three-hole orifice plate performs better than a single-hole orifice plate in terms of higher differential pressure, reduced permanent pressure loss and lower power consumption of the pump.","PeriodicalId":49848,"journal":{"name":"Measurement Science Review","volume":"25 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/msr-2023-0029","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The widely used orifice plate falls under restricted type flow devices, has the highest differential pressure and permanent pressure drop in the ensemble. The objective is to curtail the permanent pressure drop and maintain the differential pressure across the orifice plate, and thereby, the power required to pump the liquid is retrenched. So, three-hole, four-hole and five-hole orifice plates with an identical area to that of the single-hole orifice plate were designed and experiments were carried out. It is observed that the experimental results almost matched with the simulation data. In comparing the performance, the four-hole orifice plate yielded a higher differential pressure and higher-pressure loss. In contrast, the five-hole orifice yielded lower differential pressure and higher-pressure loss compared to the single-hole orifice plate. In case of three-hole orifice plate it performed better than the single-hole orifice with reduced pressure loss and higher differential pressure. It was also found that the power consumed by the pump for pumping was lower for three-hole, four-hole and five-hole orifice plates compared to the single-hole orifice plate. Thus, the three-hole orifice plate performs better than a single-hole orifice plate in terms of higher differential pressure, reduced permanent pressure loss and lower power consumption of the pump.
压差和永久压力损失对多孔孔板的影响
摘要孔板是应用广泛的受限流装置,在整体中具有最高的压差和永久压降。目的是减少永久压降并保持孔板上的压差,从而减少泵送液体所需的功率。为此,设计了与单孔板面积相同的三孔板、四孔板和五孔板,并进行了实验。实验结果与仿真数据基本吻合。在性能比较中,四孔板产生了更高的压差和更高的压力损失。相比之下,与单孔孔板相比,五孔孔板产生的压差更低,压力损失更高。三孔板比单孔板性能好,压力损失小,压差高。与单孔板相比,三孔板、四孔板和五孔板泵浦消耗的功率更低。因此,与单孔孔板相比,三孔孔板具有更高的压差、更小的永久压力损失和更低的泵功耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Measurement Science Review
Measurement Science Review INSTRUMENTS & INSTRUMENTATION-
CiteScore
2.00
自引率
11.10%
发文量
37
审稿时长
4.8 months
期刊介绍: - theory of measurement - mathematical processing of measured data - measurement uncertainty minimisation - statistical methods in data evaluation and modelling - measurement as an interdisciplinary activity - measurement science in education - medical imaging methods, image processing - biosignal measurement, processing and analysis - model based biomeasurements - neural networks in biomeasurement - telemeasurement in biomedicine - measurement in nanomedicine - measurement of basic physical quantities - magnetic and electric fields measurements - measurement of geometrical and mechanical quantities - optical measuring methods - electromagnetic compatibility - measurement in material science
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信