{"title":"Experimental Validation of a High-Speed Tracked Vehicle Powertrain Simulation Model","authors":"Luka Ponorac, Ivan Blagojević","doi":"10.2478/msr-2023-0025","DOIUrl":null,"url":null,"abstract":"Abstract High-speed tracked vehicles have complex powertrains that, in addition to power transfer and transformation, also perform the functions of vehicle steering and braking systems, as well as power supply system for various subsystems on the vehicle. Analyzing the power balance of a tracked vehicle, especially in specific moving scenarios such as the turning process, is of great importance for understanding the power requirements and workload of the powertrain components and their optimization. A simulation model was developed, based on the construction parameters of an experimentally tested high-speed tracked vehicle to reduce the time and material resources required for experimental testing. Both the simulation and experimental tests were conducted using the same input parameters and driving conditions for different vehicle turning scenarios. Simulation and experimental test results are compared to verify the accuracy of the simulation model. The analysis of the obtained results shows that the average value of the relative rpm error is about 5%, the average value of the relative torque error is about 7%, while the average value of the relative power error is about 6.5%.","PeriodicalId":49848,"journal":{"name":"Measurement Science Review","volume":"8 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/msr-2023-0025","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract High-speed tracked vehicles have complex powertrains that, in addition to power transfer and transformation, also perform the functions of vehicle steering and braking systems, as well as power supply system for various subsystems on the vehicle. Analyzing the power balance of a tracked vehicle, especially in specific moving scenarios such as the turning process, is of great importance for understanding the power requirements and workload of the powertrain components and their optimization. A simulation model was developed, based on the construction parameters of an experimentally tested high-speed tracked vehicle to reduce the time and material resources required for experimental testing. Both the simulation and experimental tests were conducted using the same input parameters and driving conditions for different vehicle turning scenarios. Simulation and experimental test results are compared to verify the accuracy of the simulation model. The analysis of the obtained results shows that the average value of the relative rpm error is about 5%, the average value of the relative torque error is about 7%, while the average value of the relative power error is about 6.5%.
期刊介绍:
- theory of measurement - mathematical processing of measured data - measurement uncertainty minimisation - statistical methods in data evaluation and modelling - measurement as an interdisciplinary activity - measurement science in education - medical imaging methods, image processing - biosignal measurement, processing and analysis - model based biomeasurements - neural networks in biomeasurement - telemeasurement in biomedicine - measurement in nanomedicine - measurement of basic physical quantities - magnetic and electric fields measurements - measurement of geometrical and mechanical quantities - optical measuring methods - electromagnetic compatibility - measurement in material science