{"title":"Projective self-dual polygons in higher dimensions","authors":"Ana Chavez-Caliz","doi":"10.1515/advgeom-2023-0024","DOIUrl":null,"url":null,"abstract":"Abstract This paper examines the moduli space M m , n , k of m -self-dual n -gons in ℙ k . We present an explicit construction of self-dual polygons and determine the dimension of M m , n , k for certain n and m . Additionally, we propose a conjecture that extends Clebsch’s theorem, which states that every pentagon in ℝℙ 2 is invariant under the Pentagram map.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/advgeom-2023-0024","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This paper examines the moduli space M m , n , k of m -self-dual n -gons in ℙ k . We present an explicit construction of self-dual polygons and determine the dimension of M m , n , k for certain n and m . Additionally, we propose a conjecture that extends Clebsch’s theorem, which states that every pentagon in ℝℙ 2 is invariant under the Pentagram map.
期刊介绍:
Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.