Computation of the unit in the first place (ufp) and the unit in the last place (ulp) in precision-p base $$\beta $$

IF 1.6 3区 数学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Siegfried M. Rump
{"title":"Computation of the unit in the first place (ufp) and the unit in the last place (ulp) in precision-p base $$\\beta $$","authors":"Siegfried M. Rump","doi":"10.1007/s10543-023-00970-2","DOIUrl":null,"url":null,"abstract":"Abstract There are simple algorithms to compute the predecessor, successor, unit in the first place, unit in the last place etc. in binary arithmetic. In this note equally simple algorithms for computing the unit in the first place and the unit in the last place in precision- p base- $$\\beta $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>β</mml:mi> </mml:math> arithmetic with $$p \\geqslant 1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> and with $$\\beta \\geqslant 2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>β</mml:mi> <mml:mo>⩾</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> are presented. The algorithms work in the underflow range, and numbers close to overflow are treated by scaling. The algorithms use only the basic operations with directed rounding. If the successor (or predecessor) of a floating-point number is available, an algorithm in rounding to nearest is presented as well.","PeriodicalId":55351,"journal":{"name":"BIT Numerical Mathematics","volume":"195 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BIT Numerical Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10543-023-00970-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract There are simple algorithms to compute the predecessor, successor, unit in the first place, unit in the last place etc. in binary arithmetic. In this note equally simple algorithms for computing the unit in the first place and the unit in the last place in precision- p base- $$\beta $$ β arithmetic with $$p \geqslant 1$$ p 1 and with $$\beta \geqslant 2$$ β 2 are presented. The algorithms work in the underflow range, and numbers close to overflow are treated by scaling. The algorithms use only the basic operations with directed rounding. If the successor (or predecessor) of a floating-point number is available, an algorithm in rounding to nearest is presented as well.

Abstract Image

以precision-p为基数计算第一个单位(ufp)和最后一个单位(ulp) $$\beta $$
摘要在二进制算法中,有计算前位、后位、第一位、最后位等的简单算法。在本说明中,提出了同样简单的算法,用于首先计算单元,并在精度- p基数- $$\beta $$ β算术中使用$$p \geqslant 1$$ p小于或等于1和$$\beta \geqslant 2$$ β小于或等于2。算法工作在底流范围内,接近溢出的数字通过缩放处理。这些算法只使用有向舍入的基本运算。如果浮点数的后继数(或前驱数)是可用的,那么也给出了舍入到最接近的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BIT Numerical Mathematics
BIT Numerical Mathematics 数学-计算机:软件工程
CiteScore
2.90
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: The journal BIT has been published since 1961. BIT publishes original research papers in the rapidly developing field of numerical analysis. The essential areas covered by BIT are development and analysis of numerical methods as well as the design and use of algorithms for scientific computing. Topics emphasized by BIT include numerical methods in approximation, linear algebra, and ordinary and partial differential equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信