Membrane degradation in redox flow batteries

IF 5.8 3区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Felix Lulay, Claudia Weidlich, Markus Valtiner, Christian M. Pichler
{"title":"Membrane degradation in redox flow batteries","authors":"Felix Lulay, Claudia Weidlich, Markus Valtiner, Christian M. Pichler","doi":"10.1080/17518253.2023.2274529","DOIUrl":null,"url":null,"abstract":"ABSTRACT Redox flow batteries are a promising technology to enable the middle term storage of fluctuating renewable electricity production. The membrane is a key component in the battery system and to further develop and improve the battery systems, detailed understanding of the membrane aging and degradation mechanisms are required. This review gives a comprehensive overview about the various membrane degradation mechanisms in the most relevant redox flow battery systems. We discuss different testing approaches for membranes and compare the influence of different battery chemistries, testing protocols and degradation mechanisms. Based on the current state of the art, an outlook on the greatest challenges for developing novel and more stable membrane materials is given. GRAPHICAL ABSTRACT","PeriodicalId":12768,"journal":{"name":"Green Chemistry Letters and Reviews","volume":"14 1","pages":"0"},"PeriodicalIF":5.8000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry Letters and Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17518253.2023.2274529","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Redox flow batteries are a promising technology to enable the middle term storage of fluctuating renewable electricity production. The membrane is a key component in the battery system and to further develop and improve the battery systems, detailed understanding of the membrane aging and degradation mechanisms are required. This review gives a comprehensive overview about the various membrane degradation mechanisms in the most relevant redox flow battery systems. We discuss different testing approaches for membranes and compare the influence of different battery chemistries, testing protocols and degradation mechanisms. Based on the current state of the art, an outlook on the greatest challenges for developing novel and more stable membrane materials is given. GRAPHICAL ABSTRACT
氧化还原液流电池的膜降解
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Green Chemistry Letters and Reviews
Green Chemistry Letters and Reviews CHEMISTRY, MULTIDISCIPLINARY-GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
CiteScore
9.10
自引率
3.00%
发文量
48
期刊介绍: Green Chemistry Letters and Reviews is an Open Access, peer-reviewed journal focused on rapid publication of innovative new syntheses and procedures that reduce or eliminate the use and generation of hazardous materials. Reviews of state-of-the-art green chemistry technologies are also included within the journal''s scope. Green Chemistry Letters and Reviews is divided into three overlapping topic areas: research, education, and industrial implementation. The journal publishes both letters, which concisely communicate the most time-sensitive results, and reviews, which aid researchers in understanding the state of science on important green chemistry topics. Submissions are encouraged which apply the 12 principles of green chemistry to: -Green Chemistry Education- Synthetic Reaction Pathways- Research and Process Analytical Techniques- Separation and Purification Technologies- Renewable Feedstocks- Degradable Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信