{"title":"A twist in sharp Sobolev inequalities with lower order remainder terms","authors":"Emmanuel Hebey","doi":"10.1515/acv-2022-0046","DOIUrl":null,"url":null,"abstract":"Abstract Let <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>M</m:mi> <m:mo>,</m:mo> <m:mi>g</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> {(M,g)} be a smooth compact Riemannian manifold of dimension <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>3</m:mn> </m:mrow> </m:math> {n\\geq 3} . Let also A be a smooth symmetrical positive <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mn>2</m:mn> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> {(0,2)} -tensor field in M . By the Sobolev embedding theorem, we can write that there exist <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>K</m:mi> <m:mo>,</m:mo> <m:mi>B</m:mi> </m:mrow> <m:mo>></m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> {K,B>0} such that for any <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>u</m:mi> <m:mo>∈</m:mo> <m:mrow> <m:msup> <m:mi>H</m:mi> <m:mn>1</m:mn> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>M</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> {u\\in H^{1}(M)} , (0.1) <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msubsup> <m:mrow> <m:mo>∥</m:mo> <m:mi>u</m:mi> <m:mo>∥</m:mo> </m:mrow> <m:msup> <m:mi>L</m:mi> <m:msup> <m:mn>2</m:mn> <m:mo>⋆</m:mo> </m:msup> </m:msup> <m:mn>2</m:mn> </m:msubsup> <m:mo>≤</m:mo> <m:mrow> <m:mrow> <m:mi>K</m:mi> <m:mo></m:mo> <m:msubsup> <m:mrow> <m:mo>∥</m:mo> <m:mrow> <m:msub> <m:mo>∇</m:mo> <m:mi>A</m:mi> </m:msub> <m:mo></m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo>∥</m:mo> </m:mrow> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> <m:mn>2</m:mn> </m:msubsup> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:mi>B</m:mi> <m:mo></m:mo> <m:msubsup> <m:mrow> <m:mo>∥</m:mo> <m:mi>u</m:mi> <m:mo>∥</m:mo> </m:mrow> <m:msup> <m:mi>L</m:mi> <m:mn>1</m:mn> </m:msup> <m:mn>2</m:mn> </m:msubsup> </m:mrow> </m:mrow> </m:mrow> </m:math> \\|u\\|_{L^{2^{\\star}}}^{2}\\leq K\\|\\nabla_{A}u\\|_{L^{2}}^{2}+B\\|u\\|_{L^{1}}^{2} where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mi>H</m:mi> <m:mn>1</m:mn> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>M</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> {H^{1}(M)} is the standard Sobolev space of functions in <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> </m:math> {L^{2}} with one derivative in <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> </m:math> {L^{2}} , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mrow> <m:msub> <m:mo>∇</m:mo> <m:mi>A</m:mi> </m:msub> <m:mo></m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mn>2</m:mn> </m:msup> <m:mo>=</m:mo> <m:mrow> <m:mi>A</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mo>∇</m:mo> <m:mo></m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo>,</m:mo> <m:mrow> <m:mo>∇</m:mo> <m:mo></m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:math> {|\\nabla_{A}u|^{2}=A(\\nabla u,\\nabla u)} and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mn>2</m:mn> <m:mo>⋆</m:mo> </m:msup> </m:math> {2^{\\star}} is the critical Sobolev exponent for <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>H</m:mi> <m:mn>1</m:mn> </m:msup> </m:math> {H^{1}} . We compute in this paper the value of the best possible K in (0.1) and investigate the validity of the corresponding sharp inequality.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/acv-2022-0046","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Let (M,g) {(M,g)} be a smooth compact Riemannian manifold of dimension n≥3 {n\geq 3} . Let also A be a smooth symmetrical positive (0,2) {(0,2)} -tensor field in M . By the Sobolev embedding theorem, we can write that there exist K,B>0 {K,B>0} such that for any u∈H1(M) {u\in H^{1}(M)} , (0.1) ∥u∥L2⋆2≤K∥∇Au∥L22+B∥u∥L12 \|u\|_{L^{2^{\star}}}^{2}\leq K\|\nabla_{A}u\|_{L^{2}}^{2}+B\|u\|_{L^{1}}^{2} where H1(M) {H^{1}(M)} is the standard Sobolev space of functions in L2 {L^{2}} with one derivative in L2 {L^{2}} , |∇Au|2=A(∇u,∇u) {|\nabla_{A}u|^{2}=A(\nabla u,\nabla u)} and 2⋆ {2^{\star}} is the critical Sobolev exponent for H1 {H^{1}} . We compute in this paper the value of the best possible K in (0.1) and investigate the validity of the corresponding sharp inequality.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.