Radoslav Fulek, Michael Pelsmajer, Marcus Schaefer
{"title":"Hanani-Tutte for Radial Planarity II","authors":"Radoslav Fulek, Michael Pelsmajer, Marcus Schaefer","doi":"10.37236/10169","DOIUrl":null,"url":null,"abstract":"A drawing of a graph $G$, possibly with multiple edges but without loops, is radial if all edges are drawn radially, that is, each edge intersects every circle centered at the origin at most once. $G$ is radial planar if it has a radial embedding, that is, a crossing-free radial drawing. If the vertices of $G$ are ordered or partitioned into ordered levels (as they are for leveled graphs), we require that the distances of the vertices from the origin respect the ordering or leveling.
 A pair of edges $e$ and $f$ in a graph is independent if $e$ and $f$ do not share a vertex. We show that if a leveled graph $G$ has a radial drawing in which every two independent edges cross an even number of times, then $G$ is radial planar. In other words, we establish the strong Hanani-Tutte theorem for radial planarity. This characterization yields a very simple algorithm for radial planarity testing.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"259 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37236/10169","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A drawing of a graph $G$, possibly with multiple edges but without loops, is radial if all edges are drawn radially, that is, each edge intersects every circle centered at the origin at most once. $G$ is radial planar if it has a radial embedding, that is, a crossing-free radial drawing. If the vertices of $G$ are ordered or partitioned into ordered levels (as they are for leveled graphs), we require that the distances of the vertices from the origin respect the ordering or leveling.
A pair of edges $e$ and $f$ in a graph is independent if $e$ and $f$ do not share a vertex. We show that if a leveled graph $G$ has a radial drawing in which every two independent edges cross an even number of times, then $G$ is radial planar. In other words, we establish the strong Hanani-Tutte theorem for radial planarity. This characterization yields a very simple algorithm for radial planarity testing.
期刊介绍:
The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.