Andrea Bocchieri, Lorenzo V. Mugnai, Enzo Pascale, Quentin Changeat, Giovanna Tinetti
{"title":"Detecting molecules in Ariel low resolution transmission spectra","authors":"Andrea Bocchieri, Lorenzo V. Mugnai, Enzo Pascale, Quentin Changeat, Giovanna Tinetti","doi":"10.1007/s10686-023-09911-x","DOIUrl":null,"url":null,"abstract":"<div><p>The <i>Ariel</i> Space Mission aims to observe a diverse sample of exoplanet atmospheres across a wide wavelength range of 0.5 to 7.8 microns. The observations are organized into four Tiers, with <i>Tier 1</i> being a reconnaissance survey. This Tier is designed to achieve a sufficient signal-to-noise ratio (S/N) at low spectral resolution in order to identify featureless spectra or detect key molecular species without necessarily constraining their abundances with high confidence. We introduce a <i>P</i>-statistic that uses the abundance posteriors from a spectral retrieval to infer the probability of a molecule’s presence in a given planet’s atmosphere in Tier 1. We find that this method predicts probabilities that correlate well with the input abundances, indicating considerable predictive power when retrieval models have comparable or higher complexity compared to the data. However, we also demonstrate that the <i>P</i>-statistic loses representativity when the retrieval model has lower complexity, expressed as the inclusion of fewer than the expected molecules. The reliability and predictive power of the <i>P</i>-statistic are assessed on a simulated population of exoplanets with H<span>\\(_2\\)</span>-He dominated atmospheres, and forecasting biases are studied and found not to adversely affect the classification of the survey.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 2-3","pages":"605 - 644"},"PeriodicalIF":2.7000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-023-09911-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-023-09911-x","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Ariel Space Mission aims to observe a diverse sample of exoplanet atmospheres across a wide wavelength range of 0.5 to 7.8 microns. The observations are organized into four Tiers, with Tier 1 being a reconnaissance survey. This Tier is designed to achieve a sufficient signal-to-noise ratio (S/N) at low spectral resolution in order to identify featureless spectra or detect key molecular species without necessarily constraining their abundances with high confidence. We introduce a P-statistic that uses the abundance posteriors from a spectral retrieval to infer the probability of a molecule’s presence in a given planet’s atmosphere in Tier 1. We find that this method predicts probabilities that correlate well with the input abundances, indicating considerable predictive power when retrieval models have comparable or higher complexity compared to the data. However, we also demonstrate that the P-statistic loses representativity when the retrieval model has lower complexity, expressed as the inclusion of fewer than the expected molecules. The reliability and predictive power of the P-statistic are assessed on a simulated population of exoplanets with H\(_2\)-He dominated atmospheres, and forecasting biases are studied and found not to adversely affect the classification of the survey.
期刊介绍:
Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments.
Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields.
Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.