A Poisson basis theorem for symmetric algebras of infinite-dimensional Lie algebras

IF 0.8 4区 数学 Q2 MATHEMATICS
Omar Leon Sanchez, Susan J. Sierra
{"title":"A Poisson basis theorem for symmetric algebras of infinite-dimensional Lie algebras","authors":"Omar Leon Sanchez, Susan J. Sierra","doi":"10.4310/arkiv.2023.v61.n2.a6","DOIUrl":null,"url":null,"abstract":"We consider when the symmetric algebra of an infinite-dimensional Lie algebra, equipped with the natural Poisson bracket, satisfies the ascending chain condition (ACC) on Poisson ideals. We define a combinatorial condition on a graded Lie algebra which we call Dicksonian because it is related to Dickson's lemma on finite subsets of $\\mathbb N^k$. Our main result is: ","PeriodicalId":55569,"journal":{"name":"Arkiv for Matematik","volume":"177 6 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arkiv for Matematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/arkiv.2023.v61.n2.a6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

We consider when the symmetric algebra of an infinite-dimensional Lie algebra, equipped with the natural Poisson bracket, satisfies the ascending chain condition (ACC) on Poisson ideals. We define a combinatorial condition on a graded Lie algebra which we call Dicksonian because it is related to Dickson's lemma on finite subsets of $\mathbb N^k$. Our main result is:
无限维李代数对称代数的泊松基定理
考虑具有自然泊松括号的无限维李代数的对称代数满足泊松理想上的升链条件(ACC)。我们在一个分级李代数上定义了一个组合条件,我们称之为Dicksonian,因为它与Dickson关于$\mathbb N^k$的有限子集的引理有关。我们的主要结果是:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arkiv for Matematik
Arkiv for Matematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Publishing research papers, of short to moderate length, in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信