Symmetric $ n $-derivations on prime ideals with applications

IF 1.8 3区 数学 Q1 MATHEMATICS
Shakir Ali, Amal S. Alali, Sharifah K. Said Husain, Vaishali Varshney
{"title":"Symmetric $ n $-derivations on prime ideals with applications","authors":"Shakir Ali, Amal S. Alali, Sharifah K. Said Husain, Vaishali Varshney","doi":"10.3934/math.20231410","DOIUrl":null,"url":null,"abstract":"<abstract><p>Let $ \\mathfrak{S} $ be a ring. The main objective of this paper is to analyze the structure of quotient rings, which are represented as $ \\mathfrak{S}/\\mathfrak{P} $, where $ \\mathfrak{S} $ is an arbitrary ring and $ \\mathfrak{P} $ is a prime ideal of $ \\mathfrak{S} $. The paper aims to establish a link between the structure of these rings and the behaviour of traces of symmetric $ n $-derivations satisfying some algebraic identities involving prime ideals of an arbitrary ring $ \\mathfrak{S} $. Moreover, as an application of the main result, we investigate the structure of the quotient ring $ \\mathfrak{S}/\\mathfrak{P} $ and traces of symmetric $ n $-derivations.</p></abstract>","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":"77 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/math.20231410","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Let $ \mathfrak{S} $ be a ring. The main objective of this paper is to analyze the structure of quotient rings, which are represented as $ \mathfrak{S}/\mathfrak{P} $, where $ \mathfrak{S} $ is an arbitrary ring and $ \mathfrak{P} $ is a prime ideal of $ \mathfrak{S} $. The paper aims to establish a link between the structure of these rings and the behaviour of traces of symmetric $ n $-derivations satisfying some algebraic identities involving prime ideals of an arbitrary ring $ \mathfrak{S} $. Moreover, as an application of the main result, we investigate the structure of the quotient ring $ \mathfrak{S}/\mathfrak{P} $ and traces of symmetric $ n $-derivations.

素数理想上的对称n -导数及其应用
<abstract>< >设$ \mathfrak{S} $是一个环。本文的主要目的是分析商环的结构,商环表示为$ \mathfrak{S}/\mathfrak{P} $,其中$ \mathfrak{S} $是一个任意环,$ \mathfrak{P} $是$ \mathfrak{S} $的素理想。本文的目的是建立这些环的结构与满足涉及任意环的素数理想的代数恒等式的对称$ n $-导数的迹的性质之间的联系。此外,作为主要结果的一个应用,我们研究了商环$ \mathfrak{S}/\mathfrak{P} $的结构和对称$ n $-派生的迹。</p></abstract>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信