{"title":"Numerical simulation of tsunami in the system of sevastopol bays","authors":"A. Yu. Belokon, D. I. Lazorenko, V. V. Fomin","doi":"10.59887/2073-6673.2023.16(3)-4","DOIUrl":null,"url":null,"abstract":"Within the framework of numerical simulation, a study was made of the penetration of tsunami waves into the system of Sevastopol bays. The non-linear SWASH hydrodynamic model was used to simulate the tsunami propagation. To determine the boundary conditions on the liquid boundary of the computational domain, using the Black Sea tsunami model, the level fluctuations near Sevastopol in the region of depths of 90 m were calculated during the passage of tsunami waves from three potential tsunami foci caused by underwater earthquakes of magnitude 7. It was found that in because of tsunami penetration into the bays of Sevastopol from the nearest focus, the rise in sea level in the tops of the bays could reach 1–2 m. The maximum amplitudes of level fluctuations were received in Pesochnaya and Karantinnaya bays, where they reached 2 m. In the Sevastopol Bay, the level rises were about 0.5–1 m. The most intense fluctuations were observed in the first 3–3.5 hours of the tsunami action. It is shown that the coastal zone of Sevastopol is protected from waves coming from distant foci by Cape Сhersones. Numerical experiments have shown that the protective piers at the entrance to the Sevastopol Bay do not have a significant effect on the sea level fluctuations caused by the tsunami inside the bay.","PeriodicalId":37647,"journal":{"name":"Fundamentalnaya i Prikladnaya Gidrofizika","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamentalnaya i Prikladnaya Gidrofizika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59887/2073-6673.2023.16(3)-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Within the framework of numerical simulation, a study was made of the penetration of tsunami waves into the system of Sevastopol bays. The non-linear SWASH hydrodynamic model was used to simulate the tsunami propagation. To determine the boundary conditions on the liquid boundary of the computational domain, using the Black Sea tsunami model, the level fluctuations near Sevastopol in the region of depths of 90 m were calculated during the passage of tsunami waves from three potential tsunami foci caused by underwater earthquakes of magnitude 7. It was found that in because of tsunami penetration into the bays of Sevastopol from the nearest focus, the rise in sea level in the tops of the bays could reach 1–2 m. The maximum amplitudes of level fluctuations were received in Pesochnaya and Karantinnaya bays, where they reached 2 m. In the Sevastopol Bay, the level rises were about 0.5–1 m. The most intense fluctuations were observed in the first 3–3.5 hours of the tsunami action. It is shown that the coastal zone of Sevastopol is protected from waves coming from distant foci by Cape Сhersones. Numerical experiments have shown that the protective piers at the entrance to the Sevastopol Bay do not have a significant effect on the sea level fluctuations caused by the tsunami inside the bay.
期刊介绍:
Emphasis of the journal includes the following areas: - fundamental and applied hydrophysics; - dynamics and hydrodynamics of marine objects; - physical fields of ocean, atmosphere, marine objects and their interaction; - methods and means for registration hydrophysical fields of ocean and marine objects; - application of information technology for solving problems in the field of hydrophysics, design and operation of the offshore facilities system; - hydrosphere ecology; - hydrobionics; As well as the most interesting scientific conferences’ reports, materials of science debates, book reviews. From the scientists, engineers (and designers) of marine equipment, students, graduate students and professors who specialize in the field of fundamental and applied hydrophysics.