Evangelos Rozos, Vasilis Bellos, John Kalogiros, Katerina Mazi
{"title":"Efficient Flood Early Warning System for Data-Scarce, Karstic, Mountainous Environments: A Case Study","authors":"Evangelos Rozos, Vasilis Bellos, John Kalogiros, Katerina Mazi","doi":"10.3390/hydrology10100203","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient flood early warning system developed for the city of Mandra, Greece which experienced a devastating flood event in November 2017 resulting in significant loss of life. The location is of particular interest due to both its small-sized water basin (20 km2 upstream of the studied cross-section), necessitating a rapid response time for effective flood warning calculations, and the lack of hydrometric data. To address the first issue, a database of pre-simulated flooding events with a 2D hydrodynamic model corresponding to synthetic precipitations with different return periods was established. To address the latter issue, the hydrological model was calibrated using qualitative information collected after the catastrophic event, compensating for the lack of hydrometric data. The case study demonstrates the establishment of a hybrid (online–offline) flood early warning system in data-scarce environments. By utilizing pre-simulated events and qualitative information, the system provides valuable insights for flood forecasting and aids in decision-making processes. This approach can be applied to other similar locations with limited data availability, contributing to improved flood management strategies and enhanced community resilience.","PeriodicalId":37372,"journal":{"name":"Hydrology","volume":"1 1","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/hydrology10100203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an efficient flood early warning system developed for the city of Mandra, Greece which experienced a devastating flood event in November 2017 resulting in significant loss of life. The location is of particular interest due to both its small-sized water basin (20 km2 upstream of the studied cross-section), necessitating a rapid response time for effective flood warning calculations, and the lack of hydrometric data. To address the first issue, a database of pre-simulated flooding events with a 2D hydrodynamic model corresponding to synthetic precipitations with different return periods was established. To address the latter issue, the hydrological model was calibrated using qualitative information collected after the catastrophic event, compensating for the lack of hydrometric data. The case study demonstrates the establishment of a hybrid (online–offline) flood early warning system in data-scarce environments. By utilizing pre-simulated events and qualitative information, the system provides valuable insights for flood forecasting and aids in decision-making processes. This approach can be applied to other similar locations with limited data availability, contributing to improved flood management strategies and enhanced community resilience.
HydrologyEarth and Planetary Sciences-Earth-Surface Processes
CiteScore
4.90
自引率
21.90%
发文量
192
审稿时长
6 weeks
期刊介绍:
Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences, including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology, hydrogeology and hydrogeophysics. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, ecohydrology, geomorphology, soil science, instrumentation and remote sensing, data and information sciences, civil and environmental engineering are within scope. Social science perspectives on hydrological problems such as resource and ecological economics, sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site. Studies focused on urban hydrological issues are included.