Yiming Zhang, Weiqiong Zheng, Huijuan Wu, Ran Zhu, Yinghan Wang, Mao Wang, Tian Ma, Chong Cheng, Zhiyuan Zeng, Shuang Li
{"title":"Tungsten oxide‐anchored Ru clusters with electron‐rich and anti‐corrosive microenvironments for efficient and robust seawater splitting","authors":"Yiming Zhang, Weiqiong Zheng, Huijuan Wu, Ran Zhu, Yinghan Wang, Mao Wang, Tian Ma, Chong Cheng, Zhiyuan Zeng, Shuang Li","doi":"10.1002/sus2.164","DOIUrl":null,"url":null,"abstract":"Abstract Ruthenium (Ru) has been recognized as a prospective candidate to substitute platinum catalysts in water‐splitting‐based hydrogen production. However, minimizing the Ru contents, optimizing the water dissociation energy of Ru sites, and enhancing the long‐term stability are extremely required, but still face a great challenge. Here, we report on creating tungsten oxide‐anchored Ru clusters (Ru–WO x ) with electron‐rich and anti‐corrosive microenvironments for efficient and robust seawater splitting. Benefiting from the abundant oxygen vacancy structure in tungsten oxide support, the Ru–WO x exhibits strong Ru–O and Ru–W bonds at the interface. Our study elucidates that the strong Ru–O bonds in Ru–WO x may accelerate the water dissociation kinetics, and the Ru–W bonds will lead to the strong metal–support interaction and electrons transfer from W to Ru. The optimal Ru–WO x catalysts exhibit a low overpotential of 29 and 218 mV at the current density of 10 mA cm −2 in alkaline and seawater media, respectively. The outstanding long‐term stability discloses that the Ru–WO x catalysts own efficient corrosion resistance in seawater electrolysis. We believe that this work offers new insights into the essential roles of electron‐rich and anti‐corrosive microenvironments in Ru‐based catalysts and provide a new pathway to design efficient and robust cathodes for seawater splitting.","PeriodicalId":29781,"journal":{"name":"SusMat","volume":null,"pages":null},"PeriodicalIF":18.7000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SusMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sus2.164","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Ruthenium (Ru) has been recognized as a prospective candidate to substitute platinum catalysts in water‐splitting‐based hydrogen production. However, minimizing the Ru contents, optimizing the water dissociation energy of Ru sites, and enhancing the long‐term stability are extremely required, but still face a great challenge. Here, we report on creating tungsten oxide‐anchored Ru clusters (Ru–WO x ) with electron‐rich and anti‐corrosive microenvironments for efficient and robust seawater splitting. Benefiting from the abundant oxygen vacancy structure in tungsten oxide support, the Ru–WO x exhibits strong Ru–O and Ru–W bonds at the interface. Our study elucidates that the strong Ru–O bonds in Ru–WO x may accelerate the water dissociation kinetics, and the Ru–W bonds will lead to the strong metal–support interaction and electrons transfer from W to Ru. The optimal Ru–WO x catalysts exhibit a low overpotential of 29 and 218 mV at the current density of 10 mA cm −2 in alkaline and seawater media, respectively. The outstanding long‐term stability discloses that the Ru–WO x catalysts own efficient corrosion resistance in seawater electrolysis. We believe that this work offers new insights into the essential roles of electron‐rich and anti‐corrosive microenvironments in Ru‐based catalysts and provide a new pathway to design efficient and robust cathodes for seawater splitting.
期刊介绍:
SusMat aims to publish interdisciplinary and balanced research on sustainable development in various areas including materials science, engineering, chemistry, physics, and ecology. The journal focuses on sustainable materials and their impact on energy and the environment. The topics covered include environment-friendly materials, green catalysis, clean energy, and waste treatment and management. The readership includes materials scientists, engineers, chemists, physicists, energy and environment researchers, and policy makers. The journal is indexed in CAS, Current Contents, DOAJ, Science Citation Index Expanded, and Web of Science. The journal highly values innovative multidisciplinary research with wide impact.