Optical Fiber-Based Needle Shape Sensing in Real Tissue: Single Core vs. Multicore Approaches

Dimitri A Lezcano, Yernar Zhetpissov, Alexandra Cheng, Jin Seob Kim, Iulian I Iordachita
{"title":"Optical Fiber-Based Needle Shape Sensing in Real Tissue: Single Core vs. Multicore Approaches","authors":"Dimitri A Lezcano, Yernar Zhetpissov, Alexandra Cheng, Jin Seob Kim, Iulian I Iordachita","doi":"10.1142/s2424905x23500046","DOIUrl":null,"url":null,"abstract":"Flexible needle insertion procedures are common for minimally-invasive surgeries for diagnosing and treating prostate cancer. Bevel-tip needles provide physicians the capability to steer the needle during long insertions to avoid vital anatomical structures in the patient and reduce post-operative patient discomfort. To provide needle placement feedback to the physician, sensors are embedded into needles for determining the real-time 3D shape of the needle during operation without needing to visualize the needle intra-operatively. Through expansive research in fiber optics, a plethora of bio-compatible, MRI-compatible, optical shape-sensors have been developed to provide real-time shape feedback, such as single-core and multicore fiber Bragg gratings. In this paper, we directly compare single-core fiber-based and multicore fiber-based needle shape-sensing through identically constructed, four-active area sensorized bevel-tip needles inserted into phantom and ex-vivo tissue on the same experimental platform. In this work, we found that for shape-sensing in phantom tissue, the two needles performed identically with a p-value of 0.164 > 0.05, but in ex-vivo real tissue, the single-core fiber sensorized needle significantly outperformed the multicore fiber configuration with a p-value of 0.0005 < 0.05. This paper also presents the experimental platform and method for directly comparing these optical shape sensors for the needle shape-sensing task, as well as provides direction, insight and required considerations for future work in constructively optimizing sensorized needles.","PeriodicalId":73821,"journal":{"name":"Journal of medical robotics research","volume":"184 1‐6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of medical robotics research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2424905x23500046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Flexible needle insertion procedures are common for minimally-invasive surgeries for diagnosing and treating prostate cancer. Bevel-tip needles provide physicians the capability to steer the needle during long insertions to avoid vital anatomical structures in the patient and reduce post-operative patient discomfort. To provide needle placement feedback to the physician, sensors are embedded into needles for determining the real-time 3D shape of the needle during operation without needing to visualize the needle intra-operatively. Through expansive research in fiber optics, a plethora of bio-compatible, MRI-compatible, optical shape-sensors have been developed to provide real-time shape feedback, such as single-core and multicore fiber Bragg gratings. In this paper, we directly compare single-core fiber-based and multicore fiber-based needle shape-sensing through identically constructed, four-active area sensorized bevel-tip needles inserted into phantom and ex-vivo tissue on the same experimental platform. In this work, we found that for shape-sensing in phantom tissue, the two needles performed identically with a p-value of 0.164 > 0.05, but in ex-vivo real tissue, the single-core fiber sensorized needle significantly outperformed the multicore fiber configuration with a p-value of 0.0005 < 0.05. This paper also presents the experimental platform and method for directly comparing these optical shape sensors for the needle shape-sensing task, as well as provides direction, insight and required considerations for future work in constructively optimizing sensorized needles.
真实组织中基于光纤的针形传感:单芯与多芯方法
在诊断和治疗前列腺癌的微创手术中,灵活的针头插入手术是很常见的。斜尖针头为医生提供了在长时间插入时控制针头的能力,以避免患者的重要解剖结构,减少术后患者的不适。为了向医生提供针头放置的反馈,传感器被嵌入针头中,以便在手术过程中确定针头的实时3D形状,而无需在术中可视化针头。通过对光纤的广泛研究,已经开发出大量生物兼容、核磁共振兼容的光学形状传感器,以提供实时形状反馈,如单核和多核光纤布拉格光栅。在本文中,我们直接比较了单芯纤维和多芯纤维的针头形状传感,通过相同的结构,四主动区域传感器的斜头针头插入到幻体和离体组织在同一个实验平台上。在本研究中,我们发现在模拟组织中,两根针的形状传感性能相同,p值为0.164 > 0.05,但在离体真实组织中,单芯纤维传感针的性能明显优于多芯纤维配置,p值为0.0005 < 0.05。本文还提出了直接比较这些光学形状传感器用于针形传感任务的实验平台和方法,并为今后建设性地优化传感针提供了方向、见解和需要考虑的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信