Cauchy distribution with Cuckoo search algorithms for solving job shop scheduling Problem

Ruqaya A. Muter, Luma S. Hasana
{"title":"Cauchy distribution with Cuckoo search algorithms for solving job shop scheduling Problem","authors":"Ruqaya A. Muter, Luma S. Hasana","doi":"10.55810/2313-0083.1048","DOIUrl":null,"url":null,"abstract":"This research applies the Cuckoo Search Algorithm, specifically the Original Cuckoo Search(CS), Improved Cuckoo Search(ICS), and Global Feedback cuckoo search(GFCS) with different values of parameters instead of using a fixed value of probability a banda (Pa) which equal to 0.25 by another researcher to solve the problem of Job Shop Scheduling. The goal is to modify the method to improve its effectiveness and total completion time (Makespan) using benchmark datasets for basic scheduling problems, and suggest using the Cauchy distribution, with its ability to generate random numbers from distant points, and the stronger perturbation ability of Cauchy variation compared to Gaussian variation, along with Levy flight, effectively prevent the cuckoo algorithm from falling into local optima. Notably, when the step size is 0.1 and Pa is 0.1, with a population of 10 and 100 iterations, GFCS obtains the ideal Makespan of 140 when applied to the (20x20) set. Also, the Cauchy distribution for the CS produces the best results compared levy distribution that increases the variety of the nests, enabling escape from regional extreme values and fostering global search.","PeriodicalId":218143,"journal":{"name":"Al-Bahir Journal for Engineering and Pure Sciences","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Bahir Journal for Engineering and Pure Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55810/2313-0083.1048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research applies the Cuckoo Search Algorithm, specifically the Original Cuckoo Search(CS), Improved Cuckoo Search(ICS), and Global Feedback cuckoo search(GFCS) with different values of parameters instead of using a fixed value of probability a banda (Pa) which equal to 0.25 by another researcher to solve the problem of Job Shop Scheduling. The goal is to modify the method to improve its effectiveness and total completion time (Makespan) using benchmark datasets for basic scheduling problems, and suggest using the Cauchy distribution, with its ability to generate random numbers from distant points, and the stronger perturbation ability of Cauchy variation compared to Gaussian variation, along with Levy flight, effectively prevent the cuckoo algorithm from falling into local optima. Notably, when the step size is 0.1 and Pa is 0.1, with a population of 10 and 100 iterations, GFCS obtains the ideal Makespan of 140 when applied to the (20x20) set. Also, the Cauchy distribution for the CS produces the best results compared levy distribution that increases the variety of the nests, enabling escape from regional extreme values and fostering global search.
柯西分布与布谷鸟搜索算法求解作业车间调度问题
本研究采用不同参数值的布谷鸟搜索算法,即原始布谷鸟搜索(Original Cuckoo Search, CS)、改进布谷鸟搜索(Improved Cuckoo Search, ICS)和全局反馈布谷鸟搜索(Global Feedback Cuckoo Search, GFCS)来解决作业车间调度问题,而不是采用另一位研究者提出的固定概率值a班达(Pa) = 0.25。本文的目标是对该方法进行改进,以提高其在基准数据集上处理基本调度问题的有效性和总完成时间(Makespan),并建议使用柯西分布,它具有从远距离点生成随机数的能力,并且柯西变化比高斯变化具有更强的扰动能力,加上Levy飞行,有效地防止了布谷鸟算法陷入局部最优。值得注意的是,当步长为0.1,Pa为0.1,种群为10次和100次迭代时,GFCS在应用于(20x20)集时获得理想的Makespan为140。此外,与levy分布相比,CS的Cauchy分布产生了最好的结果,levy分布增加了巢穴的种类,使其能够摆脱区域极值并促进全球搜索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信