{"title":"Deep-Sea and Lunar Radioisotopes from Nearby Astrophysical Explosions","authors":"Brian D. Fields, Anton Wallner","doi":"10.1146/annurev-nucl-011823-045541","DOIUrl":null,"url":null,"abstract":"Live (not decayed) radioisotopes on the Earth and Moon are messengers from recent nearby astrophysical explosions. Measurements of 60 Fe in deep-sea samples, Antarctic snow, and lunar regolith reveal two pulses about 3 Myr and 7 Myr ago. Detection of 244 Pu in a deep-sea crust indicates a recent r-process event. We review the ultrasensitive accelerator mass spectrometry techniques that enable these findings. We then explore the implications for astrophysics, including supernova nucleosynthesis, particularly the r-process, as well as supernova dust production and the formation of the Local Bubble that envelops the Solar System. The implications go beyond nuclear physics and astrophysics to include studies of heliophysics, astrobiology, geology, and evolutionary biology.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":"18 1","pages":"0"},"PeriodicalIF":9.1000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Nuclear and Particle Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-nucl-011823-045541","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 1
Abstract
Live (not decayed) radioisotopes on the Earth and Moon are messengers from recent nearby astrophysical explosions. Measurements of 60 Fe in deep-sea samples, Antarctic snow, and lunar regolith reveal two pulses about 3 Myr and 7 Myr ago. Detection of 244 Pu in a deep-sea crust indicates a recent r-process event. We review the ultrasensitive accelerator mass spectrometry techniques that enable these findings. We then explore the implications for astrophysics, including supernova nucleosynthesis, particularly the r-process, as well as supernova dust production and the formation of the Local Bubble that envelops the Solar System. The implications go beyond nuclear physics and astrophysics to include studies of heliophysics, astrobiology, geology, and evolutionary biology.
期刊介绍:
The Annual Review of Nuclear and Particle Science is a publication that has been available since 1952. It focuses on various aspects of nuclear and particle science, including both theoretical and experimental developments. The journal covers topics such as nuclear structure, heavy ion interactions, oscillations observed in solar and atmospheric neutrinos, the physics of heavy quarks, the impact of particle and nuclear physics on astroparticle physics, and recent advancements in accelerator design and instrumentation.
One significant recent change in the journal is the conversion of its current volume from gated to open access. This conversion was made possible through Annual Reviews' Subscribe to Open program. As a result, all articles published in the current volume are now freely available to the public under a CC BY license. This change allows for greater accessibility and dissemination of research in the field of nuclear and particle science.