{"title":"New Solutions to the Gauge Hierarchy Problem","authors":"Anson Hook","doi":"10.1146/annurev-nucl-102422-080830","DOIUrl":null,"url":null,"abstract":"Applying dimensional analysis to the Higgs mass leads one to predict new physics interactions that generate this mass at a scale of the order of 1 TeV. The question of what these interactions could be is known as the gauge hierarchy problem. Resolving this question has been a central aim of particle physics for the past few decades. Traditional solutions introduce new particles with masses below 1 TeV, but that prediction is now challenged by experiment. In this article, I review recent new approaches to the problem that do not require new particles at the TeV mass scale. I first discuss the relaxation approach, whereby the Higgs mass is made dynamical and is small at the absolute minimum of its potential. I then discuss the historical approach, whereby details about inflation and/or reheating after inflation cause the Higgs mass to be smaller than otherwise expected. Finally, I discuss solutions that use conditional probability, whereby conditioning on the fact that the cosmological constant is small automatically leads one to select vacua where the Higgs mass is also small.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":"105 1","pages":"0"},"PeriodicalIF":9.1000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Nuclear and Particle Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-nucl-102422-080830","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 1
Abstract
Applying dimensional analysis to the Higgs mass leads one to predict new physics interactions that generate this mass at a scale of the order of 1 TeV. The question of what these interactions could be is known as the gauge hierarchy problem. Resolving this question has been a central aim of particle physics for the past few decades. Traditional solutions introduce new particles with masses below 1 TeV, but that prediction is now challenged by experiment. In this article, I review recent new approaches to the problem that do not require new particles at the TeV mass scale. I first discuss the relaxation approach, whereby the Higgs mass is made dynamical and is small at the absolute minimum of its potential. I then discuss the historical approach, whereby details about inflation and/or reheating after inflation cause the Higgs mass to be smaller than otherwise expected. Finally, I discuss solutions that use conditional probability, whereby conditioning on the fact that the cosmological constant is small automatically leads one to select vacua where the Higgs mass is also small.
期刊介绍:
The Annual Review of Nuclear and Particle Science is a publication that has been available since 1952. It focuses on various aspects of nuclear and particle science, including both theoretical and experimental developments. The journal covers topics such as nuclear structure, heavy ion interactions, oscillations observed in solar and atmospheric neutrinos, the physics of heavy quarks, the impact of particle and nuclear physics on astroparticle physics, and recent advancements in accelerator design and instrumentation.
One significant recent change in the journal is the conversion of its current volume from gated to open access. This conversion was made possible through Annual Reviews' Subscribe to Open program. As a result, all articles published in the current volume are now freely available to the public under a CC BY license. This change allows for greater accessibility and dissemination of research in the field of nuclear and particle science.