{"title":"Catchment and channel components of sediment runoff in river flows (granulometric approach)","authors":"Marina Shmakova","doi":"10.1016/j.ijsrc.2023.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>A model of the channel and catchment components of sediment runoff has been developed. The model makes it possible to estimate the intensity of redistribution of river and bottom sediment in the riverbed, the size distribution of deposited or migrating particles, the mass of particles in the riverbed and catchment components of sediment load, as well as the contribution of the catchment component. The model is based on the assessment of the transport potential of the watercourse and the dynamics of the curves of the granulometric composition of bottom sediment, and products of soil and channel erosion. This approach is focused on the steady flow movement without additional sources of tributary sediment, intensive abrasion of river banks, and products of anthropogenic load. Calculations based on the model applied to the Narva River showed that the contribution of the catchment component to the sediment flow of this watercourse after intense rain is approximately 98%. The obtained results are well confirmed by the weak dynamics of channel deformations in the studied part of the watercourse.</p></div>","PeriodicalId":50290,"journal":{"name":"International Journal of Sediment Research","volume":"39 2","pages":"Pages 178-183"},"PeriodicalIF":3.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1001627923000653/pdfft?md5=1fffeca6a90022d0d18eccce901689b5&pid=1-s2.0-S1001627923000653-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sediment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001627923000653","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A model of the channel and catchment components of sediment runoff has been developed. The model makes it possible to estimate the intensity of redistribution of river and bottom sediment in the riverbed, the size distribution of deposited or migrating particles, the mass of particles in the riverbed and catchment components of sediment load, as well as the contribution of the catchment component. The model is based on the assessment of the transport potential of the watercourse and the dynamics of the curves of the granulometric composition of bottom sediment, and products of soil and channel erosion. This approach is focused on the steady flow movement without additional sources of tributary sediment, intensive abrasion of river banks, and products of anthropogenic load. Calculations based on the model applied to the Narva River showed that the contribution of the catchment component to the sediment flow of this watercourse after intense rain is approximately 98%. The obtained results are well confirmed by the weak dynamics of channel deformations in the studied part of the watercourse.
期刊介绍:
International Journal of Sediment Research, the Official Journal of The International Research and Training Center on Erosion and Sedimentation and The World Association for Sedimentation and Erosion Research, publishes scientific and technical papers on all aspects of erosion and sedimentation interpreted in its widest sense.
The subject matter is to include not only the mechanics of sediment transport and fluvial processes, but also what is related to geography, geomorphology, soil erosion, watershed management, sedimentology, environmental and ecological impacts of sedimentation, social and economical effects of sedimentation and its assessment, etc. Special attention is paid to engineering problems related to sedimentation and erosion.