{"title":"Enhancement of lean blowout limits of swirl stabilized NH3-CH4-Air flames using nanosecond repetitively pulsed discharges at elevated pressures","authors":"B Aravind, Liang Yu, Deanna Lacoste","doi":"10.1016/j.jaecs.2023.100225","DOIUrl":null,"url":null,"abstract":"<div><p>This study experimentally examines the impact of nanosecond repetitively pulsed (NRP) discharges on lean premixed methane-ammonia-air swirl flames at pressures up to 4 bar. The results reveal the extension of flame blowout limit by 10–12 % under atmospheric conditions and 5–6 % at 4 bar, when NRP discharges are applied. This decrease in the plasma effect could be attributed to the detrimental impact of strong shock waves at high pressure, destabilizing the flame. NH<sub>3</sub>-CH<sub>4</sub>-air flames shows higher lean blowout limits in comparison to CH<sub>4</sub>-air flames. NRP discharges exhibit consistent impact on the lean blowout limit enhancement across ammonia fractions (20–60 %), irrespective of pressure conditions. These results are obtained for a ratio of NRP discharge power to flame thermal power of 0.63 % and constant pulse repetition frequency of 30 kHz.</p></div>","PeriodicalId":100104,"journal":{"name":"Applications in Energy and Combustion Science","volume":"16 ","pages":"Article 100225"},"PeriodicalIF":5.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666352X23001140/pdfft?md5=51839cb386cabf0bee26d1436682af2c&pid=1-s2.0-S2666352X23001140-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in Energy and Combustion Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666352X23001140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study experimentally examines the impact of nanosecond repetitively pulsed (NRP) discharges on lean premixed methane-ammonia-air swirl flames at pressures up to 4 bar. The results reveal the extension of flame blowout limit by 10–12 % under atmospheric conditions and 5–6 % at 4 bar, when NRP discharges are applied. This decrease in the plasma effect could be attributed to the detrimental impact of strong shock waves at high pressure, destabilizing the flame. NH3-CH4-air flames shows higher lean blowout limits in comparison to CH4-air flames. NRP discharges exhibit consistent impact on the lean blowout limit enhancement across ammonia fractions (20–60 %), irrespective of pressure conditions. These results are obtained for a ratio of NRP discharge power to flame thermal power of 0.63 % and constant pulse repetition frequency of 30 kHz.