Experimental investigation of inflow-outflow asymmetry in induced-charge electro-osmosis

Lingqi Zhao , Tianwei Lai , Yingke Gao , Shaohang Yan , Mingzhe Liu , Yu Hou
{"title":"Experimental investigation of inflow-outflow asymmetry in induced-charge electro-osmosis","authors":"Lingqi Zhao ,&nbsp;Tianwei Lai ,&nbsp;Yingke Gao ,&nbsp;Shaohang Yan ,&nbsp;Mingzhe Liu ,&nbsp;Yu Hou","doi":"10.1016/j.enss.2023.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>Induced-charge electro-osmosis (ICEO) is a research hotspot in bioengineering and analytical chemistry. Inflow-outflow asymmetry of ICEO was reported in the existing literatures, but systematic study on this phenomenon is insufficient. In this experimental study, we found that in strong electric fields, not only the velocity magnitude but also the vortex positions of ICEO are asymmetrical along the inflow and outflow directions because of the pronounced non-uniform surface electrokinetic transport. On the inflow and outflow directions, the amplitudes of velocities are unequal, ICEO maximum velocity positions change depending on the electric field intensity and sodium chloride (NaCl) concentration. Additionally, the distances between vortex centers are different. At NaCl solution concentration of 0.001 mol·L<sup>–1</sup>, the outflow velocity almost vanishes. The asymmetry rises with the increasing electric field intensity. The new discoveries can direct the application of microscale devices.</p></div>","PeriodicalId":100472,"journal":{"name":"Energy Storage and Saving","volume":"3 1","pages":"Pages 16-22"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772683523000559/pdfft?md5=a4b45c0fc09da5dc42ec276d4ededa9d&pid=1-s2.0-S2772683523000559-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage and Saving","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772683523000559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Induced-charge electro-osmosis (ICEO) is a research hotspot in bioengineering and analytical chemistry. Inflow-outflow asymmetry of ICEO was reported in the existing literatures, but systematic study on this phenomenon is insufficient. In this experimental study, we found that in strong electric fields, not only the velocity magnitude but also the vortex positions of ICEO are asymmetrical along the inflow and outflow directions because of the pronounced non-uniform surface electrokinetic transport. On the inflow and outflow directions, the amplitudes of velocities are unequal, ICEO maximum velocity positions change depending on the electric field intensity and sodium chloride (NaCl) concentration. Additionally, the distances between vortex centers are different. At NaCl solution concentration of 0.001 mol·L–1, the outflow velocity almost vanishes. The asymmetry rises with the increasing electric field intensity. The new discoveries can direct the application of microscale devices.

诱导电荷电渗中流入-流出不对称的实验研究
诱导电荷电渗(ICEO)是生物工程和分析化学领域的研究热点。现有文献报道了 ICEO 的流入流出不对称现象,但对这一现象的系统研究还不够。在本实验研究中,我们发现在强电场中,由于明显的非均匀表面电动输运,ICEO 沿流入和流出方向不仅速度大小不对称,而且涡旋位置也不对称。在流入和流出方向上,速度的振幅是不相等的,ICEO 的最大速度位置随电场强度和氯化钠(NaCl)浓度的变化而变化。此外,涡旋中心之间的距离也不同。当氯化钠溶液浓度为 0.001 mol-L-1 时,外流速度几乎消失。不对称现象随着电场强度的增加而加剧。这些新发现可以指导微尺度设备的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信