Variational quantum algorithm for node embedding

IF 6.2 3区 综合性期刊 Q1 Multidisciplinary
{"title":"Variational quantum algorithm for node embedding","authors":"","doi":"10.1016/j.fmre.2023.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum machine learning has made remarkable progress in many important tasks. However, the gate complexity of the initial state preparation is seldom considered in lots of quantum machine learning algorithms, making them non-end-to-end. Herein, we propose a quantum algorithm for the node embedding problem that maps a node graph’s topological structure to embedding vectors. The resulting quantum embedding state can be used as an input for other quantum machine learning algorithms. With <span><math><mrow><mi>O</mi><mo>(</mo><mi>log</mi><mo>(</mo><mi>N</mi><mo>)</mo><mo>)</mo></mrow></math></span> qubits to store the information of <span><math><mi>N</mi></math></span> nodes, our algorithm will not lose quantum advantage for the subsequent quantum information processing. Moreover, owing to the use of a parameterized quantum circuit with <span><math><mrow><mi>O</mi><mo>(</mo><mtext>poly</mtext><mo>(</mo><mi>log</mi><mo>(</mo><mi>N</mi><mo>)</mo><mo>)</mo><mo>)</mo></mrow></math></span> depth, the resulting state can serve as an efficient quantum database. In addition, we explored the measurement complexity of the quantum node embedding algorithm, which is the main issue in training parameters, and extended the algorithm to capture high-order neighborhood information between nodes. Finally, we experimentally demonstrated our algorithm on an nuclear magnetic resonance quantum processor to solve a graph model.</p></div>","PeriodicalId":34602,"journal":{"name":"Fundamental Research","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667325823002728/pdfft?md5=7c9cbbcda04363c419f2147a225c26cb&pid=1-s2.0-S2667325823002728-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667325823002728","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum machine learning has made remarkable progress in many important tasks. However, the gate complexity of the initial state preparation is seldom considered in lots of quantum machine learning algorithms, making them non-end-to-end. Herein, we propose a quantum algorithm for the node embedding problem that maps a node graph’s topological structure to embedding vectors. The resulting quantum embedding state can be used as an input for other quantum machine learning algorithms. With O(log(N)) qubits to store the information of N nodes, our algorithm will not lose quantum advantage for the subsequent quantum information processing. Moreover, owing to the use of a parameterized quantum circuit with O(poly(log(N))) depth, the resulting state can serve as an efficient quantum database. In addition, we explored the measurement complexity of the quantum node embedding algorithm, which is the main issue in training parameters, and extended the algorithm to capture high-order neighborhood information between nodes. Finally, we experimentally demonstrated our algorithm on an nuclear magnetic resonance quantum processor to solve a graph model.

Abstract Image

节点嵌入的变量量子算法
量子机器学习在许多重要任务中取得了显著进展。然而,许多量子机器学习算法很少考虑初始状态准备的门复杂性,这使得它们无法实现端对端。在这里,我们提出了一种节点嵌入问题的量子算法,它能将节点图的拓扑结构映射为嵌入向量。由此产生的量子嵌入状态可用作其他量子机器学习算法的输入。我们的算法使用 O(log(N)) 量子位来存储 N 个节点的信息,因此在后续的量子信息处理中不会失去量子优势。此外,由于使用了深度为 O(poly(log(N)) 的参数化量子电路,所得到的状态可以作为高效的量子数据库。此外,我们还探索了量子节点嵌入算法的测量复杂度(这是训练参数的主要问题),并扩展了该算法以捕获节点间的高阶邻域信息。最后,我们在核磁共振量子处理器上实验演示了我们的算法,以求解一个图模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fundamental Research
Fundamental Research Multidisciplinary-Multidisciplinary
CiteScore
4.00
自引率
1.60%
发文量
294
审稿时长
79 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信