Novel defined N7-methylguanosine modification-related lncRNAs for predicting the prognosis of laryngeal squamous cell carcinoma

Pub Date : 2023-01-01 DOI:10.32604/biocell.2023.030796
ZHAOXU YAO, HAIBIN MA, LIN LIU, QIAN ZHAO, LONGCHAO QIN, XUEYAN REN, CHUANJUN WU, KAILI SUN
{"title":"Novel defined N7-methylguanosine modification-related lncRNAs for predicting the prognosis of laryngeal squamous cell carcinoma","authors":"ZHAOXU YAO, HAIBIN MA, LIN LIU, QIAN ZHAO, LONGCHAO QIN, XUEYAN REN, CHUANJUN WU, KAILI SUN","doi":"10.32604/biocell.2023.030796","DOIUrl":null,"url":null,"abstract":"<b>Objective:</b> Through integrated bioinformatics analysis, the goal of this work was to find new, characterised N7-methylguanosine modification-related long non-coding RNAs (m7G-lncRNAs) that might be used to predict the prognosis of laryngeal squamous cell carcinoma (LSCC). <b>Methods:</b> The clinical data and LSCC gene expression data for the current investigation were initially retrieved from the TCGA database & sanitised. Then, using co-expression analysis of m7G-associated mRNAs & lncRNAs & differential expression analysis (DEA) among LSCC & normal sample categories, we discovered lncRNAs that were connected to m7G. The prognosis prediction model was built for the training category using univariate & multivariate COX regression & LASSO regression analyses, & the model’s efficacy was checked against the test category data. In addition, we conducted DEA of prognostic m7G-lncRNAs among LSCC & normal sample categories & compiled a list of co-expression networks & the structure of prognosis m7G-lncRNAs. To compare the prognoses for individuals with LSCC in the high- & low-risk categories in the prognosis prediction model, survival and risk assessments were also carried out. Finally, we created a nomogram to accurately forecast the outcomes of LSCC patients & created receiver operating characteristic (ROC) curves to assess the prognosis prediction model’s predictive capability. <b>Results:</b> Using co-expression network analysis & differential expression analysis, we discovered 774 m7G-lncRNAs and 551 DEm7G-lncRNAs, respectively. We then constructed a prognosis prediction model for six m7G-lncRNAs (<i>FLG−AS1</i>, <i>RHOA−IT1</i>, <i>AC020913.3</i>, <i>AC027307.2</i>, <i>AC010973.2</i> and <i>AC010789.1</i>), identified 32 DEPm7G-lncRNAs, analyzed the correlation between 32 DEPm7G-lncRNAs and 13 DEPm7G-mRNAs, and performed survival analyses and risk analyses of the prognosis prediction model to assess the prognostic performance of LSCC patients. By displaying ROC curves and a nomogram, we finally checked the prognosis prediction model's accuracy. <b>Conclusion:</b> By creating novel predictive lncRNA signatures for clinical diagnosis & therapy, our findings will contribute to understanding the pathogenetic process of LSCC.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32604/biocell.2023.030796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Through integrated bioinformatics analysis, the goal of this work was to find new, characterised N7-methylguanosine modification-related long non-coding RNAs (m7G-lncRNAs) that might be used to predict the prognosis of laryngeal squamous cell carcinoma (LSCC). Methods: The clinical data and LSCC gene expression data for the current investigation were initially retrieved from the TCGA database & sanitised. Then, using co-expression analysis of m7G-associated mRNAs & lncRNAs & differential expression analysis (DEA) among LSCC & normal sample categories, we discovered lncRNAs that were connected to m7G. The prognosis prediction model was built for the training category using univariate & multivariate COX regression & LASSO regression analyses, & the model’s efficacy was checked against the test category data. In addition, we conducted DEA of prognostic m7G-lncRNAs among LSCC & normal sample categories & compiled a list of co-expression networks & the structure of prognosis m7G-lncRNAs. To compare the prognoses for individuals with LSCC in the high- & low-risk categories in the prognosis prediction model, survival and risk assessments were also carried out. Finally, we created a nomogram to accurately forecast the outcomes of LSCC patients & created receiver operating characteristic (ROC) curves to assess the prognosis prediction model’s predictive capability. Results: Using co-expression network analysis & differential expression analysis, we discovered 774 m7G-lncRNAs and 551 DEm7G-lncRNAs, respectively. We then constructed a prognosis prediction model for six m7G-lncRNAs (FLG−AS1, RHOA−IT1, AC020913.3, AC027307.2, AC010973.2 and AC010789.1), identified 32 DEPm7G-lncRNAs, analyzed the correlation between 32 DEPm7G-lncRNAs and 13 DEPm7G-mRNAs, and performed survival analyses and risk analyses of the prognosis prediction model to assess the prognostic performance of LSCC patients. By displaying ROC curves and a nomogram, we finally checked the prognosis prediction model's accuracy. Conclusion: By creating novel predictive lncRNA signatures for clinical diagnosis & therapy, our findings will contribute to understanding the pathogenetic process of LSCC.
分享
查看原文
新定义的n7 -甲基鸟苷修饰相关lncrna预测喉鳞癌预后
目的:通过综合生物信息学分析,寻找新的特异性n7 -甲基鸟苷修饰相关长链非编码rna (m7G-lncRNAs),用于预测喉鳞状细胞癌(LSCC)的预后。方法:本研究的临床资料和LSCC基因表达数据最初从TCGA数据库中检索并消毒。然后,通过m7G相关mrna和lncrna的共表达分析以及LSCC和正常样本类别之间的差异表达分析(DEA),我们发现了与m7G相关的lncrna。采用单变量和多变量COX回归及LASSO回归分析,建立训练类别的预后预测模型,并对照检验类别数据检验模型的有效性。此外,我们对LSCC和正常样本类别中的预后m7g - lncrna进行了DEA分析,并编制了预后m7g - lncrna共表达网络和结构列表。为了比较预后预测模型中高风险和低风险类别LSCC个体的预后,还进行了生存和风险评估。最后,我们创建了一个nomogram来准确预测LSCC患者的预后,并创建了受试者工作特征(receiver operating characteristic, ROC)曲线来评估预后预测模型的预测能力。结果:通过共表达网络分析和差异表达分析,我们分别发现了774个m7g - lncrna和551个dem7g - lncrna。我们构建了6个m7g - lncrna (FLG−AS1、RHOA−IT1、AC020913.3、AC027307.2、AC010973.2和AC010789.1)的预后预测模型,鉴定出32个depm7g - lncrna,分析32个depm7g - lncrna与13个depm7g - mrna的相关性,并对预后预测模型进行生存分析和风险分析,评估LSCC患者的预后表现。通过显示ROC曲线和nomogram来检验预后预测模型的准确性。结论:通过建立新的预测lncRNA特征用于临床诊断和治疗,我们的研究结果将有助于了解LSCC的发病过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信